全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 winbugs及其他软件专版
1903 1
2016-07-12
最近Google开源了他们内部使用的深度学习框架TensorFlow[1],结合之前开源的MXNet[2]和Caffe[3],对三个开源库做了一些讨论,其中只有Caffe比较仔细的看过源代码,其他的两个库仅阅读官方文档和一些研究者的评论博客有感,本文首先对三个库有个整体的比较,再针对一些三者设计的不同数据结构、计算方式、gpu的选择方式等方面做了比较详细的讨论。表格1是三者的一些基本情况的记录和比较。其中示例指的是官方给出的example是否易读易理解,因为TensorFlow直接安装python包,所以一开始没有去下源代码,从文档中找example不如另外两个下源码直接。实际上TensorFlow更加像一套独立的python接口,它不止能够完成CNN/RNN的功能,还见到过有人用它做Kmeans聚类。这个表主观因素比较明显,仅供参考。

本帖隐藏的内容



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2016-7-12 21:30:06
thanks for sharing
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群