用spss做中介分析,怎么看结果呢,是要看哪部分的数值
Run MATRIX procedure:
************* PROCESS Procedure for SPSS Release 2.16.1 ******************
Written by Andrew F. Hayes, Ph.D. www.afhayes.com
Documentation available in Hayes (2013). www.guilford.com/p/hayes3
**************************************************************************
Model = 5
Y = perc
X = sequence
M1 = FAC1_1
M2 = FAC2_1
M3 = FAC3_1
W = reputati
Sample size
210
**************************************************************************
Outcome: FAC1_1
Model Summary
R R-sq MSE F df1 df2 p
.1082 .0117 .9930 2.4651 1.0000 208.0000 .1179
Model
coeff se t p LLCI ULCI
constant -.1122 .0992 -1.1312 .2593 -.3076 .0833
sequence .2161 .1376 1.5701 .1179 -.0552 .4874
**************************************************************************
Outcome: FAC2_1
Model Summary
R R-sq MSE F df1 df2 p
.0262 .0007 1.0041 .1425 1.0000 208.0000 .7062
Model
coeff se t p LLCI ULCI
constant -.0271 .0997 -.2720 .7859 -.2237 .1695
sequence .0522 .1384 .3775 .7062 -.2206 .3251
**************************************************************************
Outcome: FAC3_1
Model Summary
R R-sq MSE F df1 df2 p
.1405 .0197 .9850 4.1903 1.0000 208.0000 .0419
Model
coeff se t p LLCI ULCI
constant .1456 .0988 1.4748 .1418 -.0490 .3403
sequence -.2806 .1371 -2.0470 .0419 -.5508 -.0104
**************************************************************************
Outcome: perc
Model Summary
R R-sq MSE F df1 df2 p
.3803 .1446 .5528 5.7189 6.0000 203.0000 .0000
Model
coeff se t p LLCI ULCI
constant 3.7597 .1119 33.6137 .0000 3.5392 3.9803
FAC1_1 .1724 .0528 3.2615 .0013 .0682 .2766
FAC2_1 -.0003 .0515 -.0065 .9948 -.1019 .1013
FAC3_1 .1575 .0521 3.0234 .0028 .0548 .2603
sequence -.1822 .1464 -1.2446 .2147 -.4708 .1064
reputati -.4482 .1519 -2.9504 .0035 -.7477 -.1487
int_1 .4427 .2083 2.1255 .0348 .0320 .8534
Product terms key:
int_1 sequence X reputati
******************** DIRECT AND INDIRECT EFFECTS *************************
Conditional direct effect(s) of X on Y at values of the moderator(s):
reputati Effect SE t p LLCI ULCI
.0000 -.1822 .1464 -1.2446 .2147 -.4708 .1064
1.0000 .2606 .1495 1.7427 .0829 -.0342 .5554
Indirect effect of X on Y
Effect Boot SE BootLLCI BootULCI
TOTAL -.0070 .0412 -.0983 .0683
FAC1_1 .0372 .0281 -.0027 .1091
FAC2_1 .0000 .0083 -.0184 .0168
FAC3_1 -.0442 .0301 -.1291 -.0034
******************** ANALYSIS NOTES AND WARNINGS *************************
Number of bootstrap samples for bias corrected bootstrap confidence intervals:
5000
Level of confidence for all confidence intervals in output:
95.00
------ END MATRIX -----