全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学
19750 70
2009-06-28
Neural Network Modeling using SAS Enterprise Miner
【语言】:英文
【页数/文件数】:600
【目录】:
Table of Contents
Chapter 1: Introduction
Chapter 2: Traditional Regression Modeling 1
2.1 The Purpose of Statistical Modeling ........................................................................... 3
2.2 Statistical Modeling Assumptions ............................................................................... 9
2.3 Checking for Outliers and Influential Data Points ..................................................... 23
2.4 Checking for Multicollinearity .................................................................................... 28
2.5 Modeling Assessment Statistics .................................................................................. 32
2.6 Bias-Variance Trade-off .............................................................................................. 39
Chapter 3: Neural Network Architecture 41
3.1 Single Layer Perceptron .............................................................................................. 43
3.2 Perceptron Training Algorithm .................................................................................... 44
3.3 Multiple Layer Perceptron Architecture ..................................................................... 47
3.4 An Explanation of the Neural Network Layers............................................................ 50
3.5 Relationship Between the Predictive Models .............................................................. 51
3.6 An Overview of the Neural Network Layers .............................................................. 53
3.7 An Overview of the Neural Network Architecture ..................................................... 63
3.8 The Objective Function ............................................................................................... 77
3.9 Neural Network Architectures .................................................................................... 84
3.10 Neural Network Hold out Method .............................................................................. 90
3.11 Optimization ................................................................................................................ 93
3.12 Numerical Examples of the Optimization Methods .................................................... 113
3.13 Numerical Examples of the Network Designs ............................................................ 126
3.14 Regularization Techniques .......................................................................................... 140
3.15 Pruning Inputs ............................................................................................................. 142
3.16 Interpretation of the Neural Network Inputs ............................................................... 145
3.17 Development to a Well-Designed Network Model ..................................................... 147
3.18 Advantages of Neural Network Modeling .................................................................. 149
3.19 The Default Settings to EM Neural Network Node .................................................... 153
Chapter 4: The NEURAL and DMREG Procedure 155
4.1 An Overview of the SAS Neural Network Procedure ................................................. 157
4.2 An Overview of the SAS DMREG Procedure ............................................................ 184
4.3 Multiple Linear Regression Example .......................................................................... 189
4.4 Autoregressive Time Series Example ......................................................................... 192
4.5 Basic Steps in Constructing the EM Diagram ............................................................. 195
Chapter 5: SAS Enterprise Miner 201
5.1 Opening the Enterprise Miner Application ................................................................. 203
5.2 Enterprise Miner Menu Options ................................................................................. 206
5.3 Option Settings to the EM Environment ..................................................................... 208
5.4 Enterprise Miner Projects and Diagrams .................................................................... 212
Chapter 6: Data Mining Using SAS Enterprise Miner 231
6.1 SEMMA ...................................................................................................................... 233
6.2 Possible Tools to the EM SEMMA Design ............................................................... 235
Chapter 7: Configuration Setup of the EM Nodes 249
7.1 Enterprise Miner Input Data Source Node .................................................................. 251
7.2 Enterprise Miner Data Partition Node ........................................................................ 279
7.3 Enterprise Miner Regression Node ............................................................................. 284
7.4 Viewing the Regression Node Results ........................................................................ 306
7.5 Model Manager ........................................................................................................... 311
7.6 Enterprise Miner Neural Network Node ..................................................................... 314
7.7 An Overview of the Advanced Neural Network Node ............................................... 331
7.8 Viewing the Neural Network Results ......................................................................... 362
7.9 Neural Network Interactive Training .......................................................................... 372
7.10 Enterprise Miner Assessment Node ............................................................................ 383
7.11 Enterprise Miner SAS Code Node .............................................................................. 409
7.12 Enterprise Miner Reporter Node ................................................................................. 426
Chapter 8: Comparing Prediction Estimates 457
8.1 Comparing Multiple Linear Regression Estimates ..................................................... 462
8.2 Comparing Nonlinear Regression Estimates .............................................................. 466
8.3 Comparing Logistic Regression Estimates ................................................................. 475
8.4 Comparing Autoregressive Time Series Estimates ..................................................... 504
8.5 Comparing Discriminant Analysis Estimates ............................................................. 533
Appendix 557
References 577
Book Index 581



其实这个书在数据挖掘版块有,但是那个楼主收的钱太多了,现在照顾一下穷人,特意免费贡献。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2009-6-28 22:26:19
谢谢分享,这是比较好的书,盼望有更多好的书和程序分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-6-29 07:24:32
谢谢lz,代表我们这些还没富裕起来的人!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-6-29 21:32:44
感谢楼主的好心的啊 ,真的是个善良的人啊!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-6-29 21:34:06
楼主是个大好人啊,再次感谢了!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-7-23 12:16:40
Download it! Thank you very much!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群