黃河泉 发表于 2016-9-17 15:46 
你的情況應該用 mlogit — Multinomial (polytomous) logistic regression,請 help mlogit 並見其說明!
谢谢老师!
实践了一下,结果如下(贴在问题后面了):
1. 我的理解是 insure 和 site 都是分类变量?对吗?
2. 请问,“ i.site” 这一项,为什么要加一个“i” 呢?有什么意义呢?
3. stata自动把 Indemnity 作为虚拟变量了?把Indemnity和 Prepaid、 Uninsure 分别做了比较,但没有比较 Prepaid、 Uninsure之间?
4. 如果我还想比较Prepaid、 Uninsure之间的差异,该如何做呢?
谢谢老师!!!
. help mlogit
. webuse sysdsn1
(Health insurance data)
. sum
Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------
patid | 644 592838.1 315023.2 3292 997539
noinsur0 | 338 .0710059 .2572155 0 1
noinsur1 | 339 .0707965 .2568637 0 1
noinsur2 | 336 .0535714 .2255058 0 1
age | 643 44.41415 14.22441 18.11087 86.07254
-------------+--------------------------------------------------------
male | 644 .2593168 .4386004 0 1
ppd0 | 644 .4751553 .4997705 0 1
ppd1 | 644 .4736025 .4996908 0 1
ppd2 | 616 .4545455 .4983343 0 1
nonwhite | 644 .1956522 .3970103 0 1
-------------+--------------------------------------------------------
ppd | 644 .4736025 .4996908 0 1
insure | 616 1.595779 .6225427 1 3
site | 644 1.987578 .7964742 1 3
. mlogit insure age male nonwhite i.site
Iteration 0: log likelihood = -555.85446
Iteration 1: log likelihood = -534.67443
Iteration 2: log likelihood = -534.36284
Iteration 3: log likelihood = -534.36165
Iteration 4: log likelihood = -534.36165
Multinomial logistic regression Number of obs = 615
LR chi2(10) = 42.99
Prob > chi2 = 0.0000
Log likelihood = -534.36165 Pseudo R2 = 0.0387
------------------------------------------------------------------------------
insure | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Indemnity | (base outcome)
-------------+----------------------------------------------------------------
Prepaid |
age | -.011745 .0061946 -1.90 0.058 -.0238862 .0003962
male | .5616934 .2027465 2.77 0.006 .1643175 .9590693
nonwhite | .9747768 .2363213 4.12 0.000 .5115955 1.437958
|
site |
2 | .1130359 .2101903 0.54 0.591 -.2989296 .5250013
3 | -.5879879 .2279351 -2.58 0.010 -1.034733 -.1412433
|
_cons | .2697127 .3284422 0.82 0.412 -.3740222 .9134476
-------------+----------------------------------------------------------------
Uninsure |
age | -.0077961 .0114418 -0.68 0.496 -.0302217 .0146294
male | .4518496 .3674867 1.23 0.219 -.268411 1.17211
nonwhite | .2170589 .4256361 0.51 0.610 -.6171725 1.05129
|
site |
2 | -1.211563 .4705127 -2.57 0.010 -2.133751 -.2893747
3 | -.2078123 .3662926 -0.57 0.570 -.9257327 .510108
|
_cons | -1.286943 .5923219 -2.17 0.030 -2.447872 -.1260134
------------------------------------------------------------------------------
.