全部版块 我的主页
论坛 金融投资论坛 六区 金融学(理论版)
3453 3
2016-10-10
Geometry, Analysis and Dynamics on sub-Riemannian Manifolds, Volume I

Geometry, Analysis and Dynamics on sub-Riemannian Manifolds, Volume II

Editors:
Davide Barilari (Université Paris 7 Denis Diderot, Paris, France)
Ugo Boscain (école Polytechnique, Palaiseau, France)
Mario Sigalotti (école Polytechnique, Palaiseau, France)

cover1.jpg

cover2.jpg

Sub-Riemannian manifolds model media with constrained dynamics: motion at any point is only allowed along a limited set of directions, which are prescribed by the physical problem. From the theoretical point of view, sub-Riemannian geometry is the geometry underlying the theory of hypoelliptic operators and degenerate diffusions on manifolds.

In the last twenty years, sub-Riemannian geometry has emerged as an independent research domain, with extremely rich motivations and ramifications in several parts of pure and applied mathematics, such as geometric analysis, geometric measure theory, stochastic calculus and evolution equations together with applications in mechanics, optimal control and biology.

The aim of the lectures collected here is to present sub-Riemannian structures for the use of both researchers and graduate students.




二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2016-10-10 05:50:13
感谢分享好资源!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-10-12 14:30:50
thanks for shairng
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2022-5-19 11:31:41
感谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群