全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 R语言论坛
8649 97
2016-12-10
R: Recipes for Analysis, Visualization and Machine Learning

Viswa Viswanathan et al.

cover.jpg

Get savvy with R language and actualize projects aimed at analysis, visualization and machine learning

The R language is a powerful, open source, functional programming language. At its core, R is a statistical programming language that provides impressive tools to analyze data and create high-level graphics. This Learning Path is chock-full of recipes. Literally! It aims to excite you with awesome projects focused on analysis, visualization, and machine learning. We’ll start off with data analysis – this will show you ways to use R to generate professional analysis reports. We’ll then move on to visualizing our data – this provides you with all the guidance needed to get comfortable with data visualization with R. Finally, we’ll move into the world of machine learning – this introduces you to data classification, regression, clustering, association rule mining, and dimension reduction.

Table of Contents

1: A SIMPLE GUIDE TO R
2: PRACTICAL MACHINE LEARNING WITH R
3: ACQUIRE AND PREPARE THE INGREDIENTS – YOUR DATA
4: WHAT'S IN THERE? – EXPLORATORY DATA ANALYSIS
5: WHERE DOES IT BELONG? – CLASSIFICATION
6: GIVE ME A NUMBER – REGRESSION
7: CAN YOU SIMPLIFY THAT? – DATA REDUCTION TECHNIQUES
8: LESSONS FROM HISTORY – TIME SERIES ANALYSIS
9: IT'S ALL ABOUT YOUR CONNECTIONS – SOCIAL NETWORK ANALYSIS
10: PUT YOUR BEST FOOT FORWARD – DOCUMENT AND PRESENT YOUR ANALYSIS
11: WORK SMARTER, NOT HARDER – EFFICIENT AND ELEGANT R CODE
12: WHERE IN THE WORLD? – GEOSPATIAL ANALYSIS
13: PLAYING NICE – CONNECTING TO OTHER SYSTEMS
14: BASIC AND INTERACTIVE PLOTS
15: HEAT MAPS AND DENDROGRAMS
16: MAPS
17: THE PIE CHART AND ITS ALTERNATIVES
18: ADDING THE THIRD DIMENSION
19: DATA IN HIGHER DIMENSIONS
20: VISUALIZING CONTINUOUS DATA
21: VISUALIZING TEXT AND XKCD-STYLE PLOTS
22: CREATING APPLICATIONS IN R
23: DATA EXPLORATION WITH RMS TITANIC
24: R AND STATISTICS
25: UNDERSTANDING REGRESSION ANALYSIS
26: CLASSIFICATION (I) – TREE, LAZY, AND PROBABILISTIC
27: CLASSIFICATION (II) – NEURAL NETWORK AND SVM
28: MODEL EVALUATION
29: ENSEMBLE LEARNING
30: CLUSTERING
31: ASSOCIATION ANALYSIS AND SEQUENCE MINING
32: DIMENSION REDUCTION
33: BIG DATA ANALYSIS (R AND HADOOP)

下载地址:



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2016-12-10 08:19:58
{:3_59:}
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-12-10 08:39:19
谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-12-10 08:47:48
感谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-12-10 09:11:36
哈哈,学习一下,
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-12-10 09:26:34
RE: 【机器学习】 R : Recipes for An
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群