Machine Learning Primer
by Daniel D. Gutierrez
Publisher: Technics Publications
Running time: 1:01:43
Video Description
Daniel D. Gutierrez gave this presentation on Machine Learning at Data Modeling Zone 2016 (
www.DataModelingZone.com).
Machine learning can be thought of as a set of tools and methods that attempt to infer patterns and extract insight from enterprise data assets. The subject of machine learning is one that has matured considerably over the past several years. Machine learning has grown to be the facilitator of the field of data science, which is, in turn, the facilitator of big data. In this session, I will provide a high-level overview of the field by examining the two primary types of statistical learning: supervised learning and unsupervised learning. Supervised learning is the most common type, often associated with predictive analytics. We’ll discuss two classes of supervised algorithms to make predictions: regression and classification. Next, we’ll discuss the most common type of unsupervised algorithm: clustering to discover previously unknown patterns within the data.
Part01
Part02
Part03
Part04
Part05
Part06