全部版块 我的主页
论坛 金融投资论坛 六区 金融学(理论版)
2401 16
2016-12-21
Music Data Mining

Tao Li, Mitsunori Ogihara, George Tzanetakis

cover.jpg

The research area of music information retrieval has gradually evolved to address the challenges of effectively accessing and interacting large collections of music and associated data, such as styles, artists, lyrics, and reviews. Bringing together an interdisciplinary array of top researchers, Music Data Mining presents a variety of approaches to successfully employ data mining techniques for the purpose of music processing.

The book first covers music data mining tasks and algorithms and audio feature extraction, providing a framework for subsequent chapters. With a focus on data classification, it then describes a computational approach inspired by human auditory perception and examines instrument recognition, the effects of music on moods and emotions, and the connections between power laws and music aesthetics. Given the importance of social aspects in understanding music, the text addresses the use of the Web and peer-to-peer networks for both music data mining and evaluating music mining tasks and algorithms. It also discusses indexing with tags and explains how data can be collected using online human computation games. The final chapters offer a balanced exploration of hit song science as well as a look at symbolic musicology and data mining.

The multifaceted nature of music information often requires algorithms and systems using sophisticated signal processing and machine learning techniques to better extract useful information. An excellent introduction to the field, this volume presents state-of-the-art techniques in music data mining and information retrieval to create novel ways of interacting with large music collections.

Features

Covers cutting-edge research in music data mining and information retrieval
Presents a survey of music data mining, along with fundamental issues of classification, audio signal processing, and feature extraction
Describes new research in instrument recognition, mood and emotion classification, and hit song prediction science
Explores the social aspects of music, including the extraction of music information from the Web and peer-to-peer networks, the use of tags in music data mining, and human computation games
Provides contributions from leading experts in data mining, machine learning, and music science

目录截图:

pic1.jpg

pic2.jpg

pic3.jpg

pic4.jpg

本帖隐藏的内容

原版 PDF:
Music Data Mining.pdf
大小:(5.82 MB)

只需: 18 个论坛币  马上下载



PDF 压缩包:
Music Data Mining.zip
大小:(5.39 MB)

只需: 18 个论坛币  马上下载

本附件包括:

  • Music Data Mining.pdf



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2016-12-21 08:48:37
提示: 作者被禁止或删除 内容自动屏蔽
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-12-21 09:09:58
之前看到有人通过数据挖掘宋词关键词然后再创作宋词,当时我就在想是不是也可以通过挖掘音谱来创作歌曲呢。原来还真是有啊。太牛了
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-12-21 09:19:19
......
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-12-21 09:33:22
yinyue shuju wajue         
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-12-21 11:01:20
thanks for sharing
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群