悬赏 40 个论坛币 未解决
Consider 2016 coins, all of which initially showing heads, lying in a straight line on a long table. Two players, Alex and Ben, standing by the same side of the table, play the following game with alternating moves: each "good move" consists of choosing a block of 15 consecutive coins, the leftmost of which showing head, and turning them all over. Alex starts first, and the last player who can make a "good move" wins the game.
a) Will this game always end?
b) Does Alex have a winning strategy, and why?
这道题是英文的,说说我的理解。一共有2016个硬币,甲和乙分别翻硬币。2016个硬币开始默认都是head朝上。甲先翻硬币,规则是:必须连续翻15个硬币(如果是head就会变成tail,如果是tail就会变成head),而且这15个硬币中最左边一定得是head才可以翻。最后一个可以连续翻15个硬币的人赢。
第一问,这个游戏一定会结束吗?
第二问,乙有没有可能赢?策略是什么?
这道题我知道答案,第一问是游戏一定会结束,第二问是乙没有可能赢,因为无论怎么翻,甲都会赢,但是我不会严格的证明。请大家提供证明过程,谢谢。