全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 python论坛
2233 4
2017-01-06
About This Book
  • Simplify the Bayes process for solving complex statistical problems using Python;
  • Tutorial guide that will take the you through the journey of Bayesian analysis with the help of sample problems and practice exercises;
  • Learn how and when to use Bayesian analysis in your applications with this guide.
Who This Book Is ForStudents, researchers and data scientists who wish to learn Bayesian data analysis with Python and implement probabilistic models in their day to day projects. Programming experience with Python is essential. No previous statistical knowledge is assumed.
What You Will Learn
  • Understand the essentials Bayesian concepts from a practical point of view
  • Learn how to build probabilistic models using the Python library PyMC3
  • Acquire the skills to sanity-check your models and modify them if necessary
  • Add structure to your models and get the advantages of hierarchical models
  • Find out how different models can be used to answer different data analysis questions
  • When in doubt, learn to choose between alternative models.
  • Predict continuous target outcomes using regression analysis or assign classes using logistic and softmax regression.
  • Learn how to think probabilistically and unleash the power and flexibility of the Bayesian framework
In DetailThe purpose of this book is to teach the main concepts of Bayesian data analysis. We will learn how to effectively use PyMC3, a Python library for probabilistic programming, to perform Bayesian parameter estimation, to check models and validate them. This book begins presenting the key concepts of the Bayesian framework and the main advantages of this approach from a practical point of view. Moving on, we will explore the power and flexibility of generalized linear models and how to adapt them to a wide array of problems, including regression and classification. We will also look into mixture models and clustering data, and we will finish with advanced topics like non-parametrics models and Gaussian processes. With the help of Python and PyMC3 you will learn to implement, check and expand Bayesian models to solve data analysis problems.
Style and approachBayes algorithms are widely used in statistics, machine learning, artificial intelligence, and data mining. This will be a practical guide allowing the readers to use Bayesian methods for statistical modelling and analysis using Python.

Title: Bayesian Analysis with Python                                                
By: Osvaldo Martin                                                                                                         
Ebook: November 2016                                                   
Pages: 282               
Ebook ISBN: 978-1-78588-985-1 | ISBN 10: 1-78588-985-0


附件列表
lrg.jpg

原图尺寸 145.48 KB

lrg.jpg

Bayesian Analysis with Python-Packt Publishing (2016).rar

大小:8.13 MB

只需: 10 个论坛币  马上下载

epub格式

本附件包括:

  • Bayesian Analysis with Python-Packt Publishing (2016).epub

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2017-1-10 10:19:49
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-1-25 00:49:08
Thank you
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2018-1-12 20:30:03
dong1104 发表于 2017-1-6 14:52
About This Book
  • Simplify the Bayes process for solving complex statistical problems using Python ...
  • cool
    二维码

    扫码加我 拉你入群

    请注明:姓名-公司-职位

    以便审核进群资格,未注明则拒绝

    2019-4-19 10:29:41
    感谢分享
    二维码

    扫码加我 拉你入群

    请注明:姓名-公司-职位

    以便审核进群资格,未注明则拒绝

    相关推荐
    栏目导航
    热门文章
    推荐文章

    说点什么

    分享

    扫码加好友,拉您进群
    各岗位、行业、专业交流群