书名:一共两本,不同的作者
1 Introduction to Probability
Charles M. Grinstead
Swarthmore College
J. Laurie Snell
Dartmouth College
2 Introduction to Probability
Dimitri P. Bertsekas and John N. Tsitsiklis
格式:pdf
大小:520页 285页
目录:
Contents
1 Discrete Probability Distributions 1
1.1 Simulation of Discrete Probabilities . . . . . . . . . . . . . . . . . . . 1
1.2 Discrete Probability Distributions . . . . . . . . . . . . . . . . . . . . 18
2 Continuous Probability Densities 41
2.1 Simulation of Continuous Probabilities . . . . . . . . . . . . . . . . . 41
2.2 Continuous Density Functions . . . . . . . . . . . . . . . . . . . . . . 55
3 Combinatorics 75
3.1 Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2 Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.3 Card Shuffling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4 Conditional Probability 133
4.1 Discrete Conditional Probability . . . . . . . . . . . . . . . . . . . . 133
4.2 Continuous Conditional Probability . . . . . . . . . . . . . . . . . . . 162
4.3 Paradoxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5 Distributions and Densities 183
5.1 Important Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.2 Important Densities . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
6 Expected Value and Variance 225
6.1 Expected Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
6.2 Variance of Discrete Random Variables . . . . . . . . . . . . . . . . . 257
6.3 Continuous Random Variables . . . . . . . . . . . . . . . . . . . . . . 268
7 Sums of Random Variables 285
7.1 Sums of Discrete Random Variables . . . . . . . . . . . . . . . . . . 285
7.2 Sums of Continuous Random Variables . . . . . . . . . . . . . . . . . 291
8 Law of Large Numbers 305
8.1 Discrete Random Variables . . . . . . . . . . . . . . . . . . . . . . . 305
8.2 Continuous Random Variables . . . . . . . . . . . . . . . . . . . . . . 316
Contents
1. Sample Space and Probability . . . . . . . . . . . . . . . .
1.1. Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2. Probabilistic Models . . . . . . . . . . . . . . . . . . . . . . .
1.3. Conditional Probability . . . . . . . . . . . . . . . . . . . . .
1.4. Independence . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5. Total Probability Theorem and Bayes’ Rule . . . . . . . . . . . .
1.6. Counting . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.7. Summary and Discussion . . . . . . . . . . . . . . . . . . . .
2. Discrete Random Variables . . . . . . . . . . . . . . . . .
2.1. Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . .
2.2. Probability Mass Functions . . . . . . . . . . . . . . . . . . .
2.3. Functions of Random Variables . . . . . . . . . . . . . . . . . .
2.4. Expectation, Mean, and Variance . . . . . . . . . . . . . . . . .
2.5. Joint PMFs of Multiple Random Variables . . . . . . . . . . . . .
2.6. Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7. Independence . . . . . . . . . . . . . . . . . . . . . . . . . .
2.8. Summary and Discussion . . . . . . . . . . . . . . . . . . . .
3. General Random Variables . . . . . . . . . . . . . . . . .
3.1. Continuous Random Variables and PDFs . . . . . . . . . . . . .
3.2. Cumulative Distribution Functions . . . . . . . . . . . . . . . .
3.3. Normal Random Variables . . . . . . . . . . . . . . . . . . . .
3.4. Conditioning on an Event . . . . . . . . . . . . . . . . . . . .
3.5. Multiple Continuous Random Variables . . . . . . . . . . . . . .
3.6. Derived Distributions . . . . . . . . . . . . . . . . . . . . . .
3.7. Summary and Discussion . . . . . . . . . . . . . . . . . . . .
4. Further Topics on Random Variables and Expectations . . . . . .
4.1. Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2. Sums of Independent Random Variables - Convolutions . . . . . . .
iii
附件列表