全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 数据分析与数据挖掘
5132 0
2017-01-19

http://blog.csdn.net/march_on/article/details/48650237:

平时很多分类问题都会面对样本不均衡的问题,很多算法在这种情况下分类效果都不够理想。针对不均衡问题,一般有采样和代价敏感学习两种策略,采样的话又分为over-sampling和under-sampling。其中,smote算法算是over-sampling中比较常用的一种。

smote算法的思想是合成新的少数类样本,合成的策略是对每个少数类样本a,从它的最近邻中随机选一个样本b,然后在a、b之间的连线上随机选一点作为新合成的少数类样本。
论文地址:https://www.jair.org/media/953/live-953-2037-jair.pdf


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群