Contents
Part I DATA EXPLORATION, ESTIMATION AND SIMULATION
1 UNIVARIATE EXPLORATORY DATA ANALYSIS ............... 3
1.1 Data,RandomVariablesandTheirDistributions................. 3
1.1.1 ThePCSData....................................... 4
1.1.2 TheS&P500IndexandFinancialReturns ............... 5
1.1.3 RandomVariablesandTheirDistributions ............... 7
1.1.4 ExamplesofProbabilityDistributionFamilies............ 8
1.2 FirstExploratoryDataAnalysisTools ......................... 13
1.2.1 RandomSamples .................................... 13
1.2.2 Histograms ......................................... 14
1.3 MoreNonparametricDensityEstimation....................... 16
1.3.1 KernelDensityEstimation............................. 17
1.3.2 ComparisonwiththeHistogram........................ 19
1.3.3 S&PDailyReturns................................... 19
1.3.4 ImportanceoftheChoiceoftheBandwidth .............. 22
1.4 QuantilesandQ-QPlots..................................... 23
1.4.1 UnderstandingtheMeaningofQ-QPlots................ 24
1.4.2 ValueatRiskandExpectedShortfall.................... 25
1.5 EstimationfromEmpiricalData .............................. 28
1.5.1 TheEmpiricalDistributionFunction .................... 28
1.5.2 OrderStatistics...................................... 29
1.5.3 EmpiricalQ-QPlots.................................. 30
1.6 RandomGeneratorsandMonteCarloSamples.................. 31
1.7 ExtremesandHeavyTailDistributions......................... 35
1.7.1 S&PDailyReturns,OnceMore........................ 35
1.7.2 TheExampleofthePCSIndex......................... 37
1.7.3 TheExampleoftheWeeklyS&PReturns................ 41
Problems ...................................................... 43
Notes&Complements........................................... 46
2 MULTIVARIATE DATA EXPLORATION ....................... 49
2.1 MultivariateDataandFirstMeasureofDependence ............. 49
2.1.1 DensityEstimation................................... 51
2.1.2 TheCorrelationCoefficient............................ 53
2.2 TheMultivariateNormalDistribution.......................... 56
2.2.1 SimulationofRandomSamples ........................ 57
2.2.2 TheBivariateCase................................... 58
2.2.3 ASimulationExample................................ 59
2.2.4 Let’sHaveSomeCoffee .............................. 60
2.2.5 IstheJointDistributionNormal? ....................... 62
2.3 MarginalsandMoreMeasuresofDependence .................. 63
2.3.1 EstimationoftheCoffeeLog-ReturnDistributions ........ 64
2.3.2 MoreMeasuresofDependence......................... 68
2.4 CopulasandRandomSimulations............................. 70
2.4.1 Copulas ............................................ 71
2.4.2 FirstExamplesofCopulaFamilies...................... 72
2.4.3 CopulasandGeneralBivariateDistributions.............. 74
2.4.4 FittingCopulas...................................... 76
2.4.5 MonteCarloSimulationswithCopulas.................. 77
2.4.6 ARiskManagementExample ......................... 80
2.5 PrincipalComponentAnalysis ............................... 84
2.5.1 IdentificationofthePrincipalComponentsofaDataSet ... 84
2.5.2 PCAwithS-Plus .................................. 87
2.5.3 EffectiveDimensionoftheSpaceofYieldCurves......... 87
2.5.4 SwapRateCurves ................................... 90
Appendix1:CalculuswithRandomVectorsandMatrices ............. 92
Appendix2:FamiliesofCopulas .................................. 95
Problems ...................................................... 98
Notes&Complements........................................... 101
Part II REGRESSION
3 PARAMETRIC REGRESSION ................................105
3.1 SimpleLinearRegression.................................... 105
3.1.1 GettingtheData..................................... 106
3.1.2 FirstPlots .......................................... 107
3.1.3 RegressionSet-up.................................... 108
3.1.4 SimpleLinearRegression ............................. 111
3.1.5 CostMinimizations .................................. 114
3.1.6 RegressionasaMinimizationProblem .................. 114
3.2 RegressionforPrediction&Sensitivities....................... 116
3.2.1 Prediction .......................................... 116
3.2.2 IntroductoryDiscussionofSensitivityandRobustness ..... 118
3.2.3 ComparingL2andL1Regressions ..................... 119
3.2.4 TakingAnotherLookattheCoffeeData................. 121
3.3 SmoothingversusDistributionTheory......................... 123
3.3.1 RegressionandConditionalExpectation................. 123
3.3.2 MaximumLikelihoodApproach........................ 124
3.4 MultipleRegression ........................................ 129
3.4.1 Notation............................................ 129
3.4.2 TheS-Plus Functionlm ............................ 130
3.4.3 R2 asaRegressionDiagnostic ......................... 131
3.5 MatrixFormulationandLinearModels ........................ 133
3.5.1 LinearModels....................................... 134
3.5.2 LeastSquares(Linear)RegressionRevisited ............. 134
3.5.3 FirstExtensions ..................................... 139
3.5.4 TestingtheCAPM ................................... 142
3.6 PolynomialRegression...................................... 145
3.6.1 PolynomialRegressionasaLinearModel ............... 146
3.6.2 ExampleofS-Plus Commands....................... 146
3.6.3 ImportantRemark ................................... 148
3.6.4 PredictionwithPolynomialRegression.................. 148
3.6.5 ChoiceoftheDegreep ............................... 150
3.7 NonlinearRegression ....................................... 150
3.8 TermStructureofInterestRates:ACrashCourse................ 154
3.9 ParametricYieldCurveEstimation............................ 160
3.9.1 EstimationProcedures................................ 160
3.9.2 PracticalImplementation.............................. 161
3.9.3 S-Plus Experiments ................................ 163
3.9.4 ConcludingRemarks ................................. 165
Appendix:CautionaryNotesonSomeS-Plus Idiosyncracies ......... 166
Problems ...................................................... 169
Notes&Complements........................................... 172
4 LOCAL & NONPARAMETRIC REGRESSION ..................175
4.1 ReviewoftheRegressionSetup .............................. 175
4.2 NaturalSplinesasLocalSmoothers ........................... 177
4.3 NonparametricScatterplotSmoothers.......................... 178
4.3.1 SmoothingSplines ................................... 179
4.3.2 LocallyWeightedRegression .......................... 181
4.3.3 ARobustSmoother .................................. 182
4.3.4 TheSuperSmoother.................................. 183
4.3.5 TheKernelSmoother................................. 183
4.4 MoreYieldCurveEstimation ................................ 186
4.4.1 AFirstEstimationMethod ............................ 186
4.4.2 ADirectApplicationofSmoothingSplines .............. 188
4.4.3 USandJapaneseInstantaneousForwardRates............ 188
4.5 MultivariateKernelRegression............................... 189
4.5.1 RunningtheKernelinS-Plus ........................ 192
4.5.2 AnExampleInvolvingtheJune1998S&PFuturesContract 193
4.6 ProjectionPursuitRegression ................................ 197
4.6.1 TheS-Plus Functionppreg ......................... 198
4.6.2 ppreg PredictionoftheS&PIndicators................. 200
4.7 NonparametricOptionPricing................................ 205
4.7.1 GeneralitiesonOptionPricing ......................... 205
4.7.2 NonparametricPricingAlternatives..................... 212
4.7.3 DescriptionoftheData ............................... 213
4.7.4 TheActualExperiment ............................... 214
4.7.5 NumericalResults ................................... 220
Appendix:KernelDensityEstimation&KernelRegression............ 222
Problems ...................................................... 225
Notes&Complements........................................... 233
Part III TIME SERIES & STATE SPACE MODELS
5 TIME SERIES MODELS: AR, MA, ARMA, & ALL THAT .........239
5.1 NotationandFirstDefinitions ................................ 239
5.1.1 Notation............................................ 239
5.1.2 RegularTimeSeriesandSignals ....................... 240
5.1.3 CalendarandIrregularTimeSeries ..................... 241
5.1.4 ExampleofDailyS&P500FuturesContracts ............ 243
5.2 HighFrequencyData ....................................... 245
5.2.1 TimeDate Manipulations ............................ 248
5.3 TimeDependentStatisticsandStationarity ..................... 253
5.3.1 StatisticalMoments .................................. 253
5.3.2 TheNotionofStationarity............................. 254
5.3.3 TheSearchforStationarity............................ 258
5.3.4 TheExampleoftheCO2 Concentrations ................ 261
5.4 FirstExamplesofModels.................................... 263
5.4.1 WhiteNoise ........................................ 264
5.4.2 RandomWalk....................................... 267
5.4.3 AutoRegressiveTimeSeries .......................... 268
5.4.4 MovingAverageTimeSeries .......................... 272
5.4.5 UsingtheBackwardShiftOperatorB................... 275
5.4.6 LinearProcesses..................................... 276
5.4.7 Causality,StationarityandInvertibility .................. 277
5.4.8 ARMATimeSeries.................................. 281
5.4.9 ARIMAModels ..................................... 282
5.5 FittingModelstoData ...................................... 282
5.5.1 PracticalSteps....................................... 282
5.5.2 S-Plus Implementation ............................. 284
5.6 PuttingaPriceonTemperature ............................... 289
5.6.1 GeneralitiesonDegreeDays........................... 290
5.6.2 TemperatureOptions ................................. 291
5.6.3 StatisticalAnalysisofTemperatureHistoricalData........ 294
Appendix:MoreS-Plus Idiosyncracies ........................... 301
Problems ...................................................... 304
Notes&Complements........................................... 308
6 MULTIVARIATE TIME SERIES, LINEAR SYSTEMS & KALMAN FILTERING .......................................311
6.1 MultivariateTimeSeries..................................... 311
6.1.1 StationarityandAuto-CovarianceFunctions.............. 312
6.1.2 MultivariateWhiteNoise.............................. 312
6.1.3 MultivariateARModels .............................. 313
6.1.4 BacktoTemperatureOptions .......................... 316
6.1.5 MultivariateMA&ARIMAModels .................... 318
6.1.6 Cointegration ....................................... 319
6.2 StateSpaceModels......................................... 321
6.3 FactorModelsasHiddenMarkovProcesses .................... 323
6.4 KalmanFilteringofLinearSystems........................... 326
6.4.1 One-Step-AheadPrediction............................ 326
6.4.2 DerivationoftheRecursiveFilteringEquations........... 327
6.4.3 WritinganS FunctionforKalmanPrediction............. 329
6.4.4 Filtering............................................ 331
6.4.5 MorePredictions .................................... 332
6.4.6 EstimationoftheParameters........................... 333
6.5 ApplicationstoLinearModels................................ 335
6.5.1 StateSpaceRepresentationofLinearModels............. 335
6.5.2 LinearModelswithTimeVaryingCoefficients ........... 336
6.5.3 CAPMwithTimeVaryingβ’s ......................... 337
6.6 StateSpaceRepresentationofTimeSeries...................... 338
6.6.1 TheCaseofARSeries................................ 339
6.6.2 TheGeneralCaseofARMASeries..................... 341
6.6.3 FittingARMAModelsbyMaximumLikelihood.......... 342
6.7 Example:PredictionofQuarterlyEarnings ..................... 343
Problems ...................................................... 346
Notes&Complements........................................... 351
NONLINEAR TIME SERIES: MODELS AND SIMULATION ......353
7.1 FirstNonlinearTimeSeriesModels ........................... 353
7.1.1 FractionalTimeSeries................................ 354
7.1.2 NonlinearAuto-RegressiveSeries ...................... 355
7.1.3 StatisticalEstimation ................................. 356
7.2 MoreNonlinearModels:ARCH,GARCH&AllThat............ 358
7.2.1 Motivation.......................................... 358
7.2.2 ARCHModels ...................................... 359
7.2.3 GARCHModels..................................... 361
7.2.4 S-Plus Commands ................................. 362
7.2.5 FittingaGARCHModeltoRealData................... 363
7.2.6 Generalizations...................................... 371
7.3 StochasticVolatilityModels.................................. 373
7.4 DiscretizationofStochasticDifferentialEquations............... 378
7.4.1 DiscretizationSchemes ............................... 379
7.4.2 MonteCarloSimulations:AFirstExample............... 381
7.5 RandomSimulationandScenarioGeneration................... 383
7.5.1 ASimpleModelfortheS&P500Index ................. 383
7.5.2 ModelingtheShortInterestRate ....................... 386
7.5.3 ModelingtheSpread ................................. 388
7.5.4 PuttingEverythingTogether........................... 389
7.6 FilteringofNonlinearSystems ............................... 391
7.6.1 HiddenMarkovModels............................... 391
7.6.2 GeneralFilteringApproach............................ 392
7.6.3 ParticleFilterApproximations ......................... 393
7.6.4 FilteringinFinance?StatisticalIssues................... 396
7.6.5 Application:TrackingVolatility........................ 397
Appendix:PreparingIndexData................................... 403
Problems ...................................................... 404
Notes&Complements........................................... 408
APPENDIX: AN INTRODUCTION TO S AND S-Plus ...............411
References ......................................................429
[此贴子已经被作者于2006-2-24 8:46:00编辑过]
I already bought it....but I have the same problem as Lao9's. (I typed the password, not copy and paste.)
Please give me the correct password or mail to me: yisungyen@gmail.com
扫码加好友,拉您进群



收藏
