全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件
5633 21
2005-10-23

Contents

Part I DATA EXPLORATION, ESTIMATION AND SIMULATION

1 UNIVARIATE EXPLORATORY DATA ANALYSIS ............... 3


1.1 Data,RandomVariablesandTheirDistributions................. 3


1.1.1 ThePCSData....................................... 4


1.1.2 TheS&P500IndexandFinancialReturns ............... 5


1.1.3 RandomVariablesandTheirDistributions ............... 7


1.1.4 ExamplesofProbabilityDistributionFamilies............ 8


1.2 FirstExploratoryDataAnalysisTools ......................... 13


1.2.1 RandomSamples .................................... 13


1.2.2 Histograms ......................................... 14


1.3 MoreNonparametricDensityEstimation....................... 16


1.3.1 KernelDensityEstimation............................. 17


1.3.2 ComparisonwiththeHistogram........................ 19


1.3.3 S&PDailyReturns................................... 19


1.3.4 ImportanceoftheChoiceoftheBandwidth .............. 22


1.4 QuantilesandQ-QPlots..................................... 23


1.4.1 UnderstandingtheMeaningofQ-QPlots................ 24


1.4.2 ValueatRiskandExpectedShortfall.................... 25


1.5 EstimationfromEmpiricalData .............................. 28


1.5.1 TheEmpiricalDistributionFunction .................... 28


1.5.2 OrderStatistics...................................... 29


1.5.3 EmpiricalQ-QPlots.................................. 30


1.6 RandomGeneratorsandMonteCarloSamples.................. 31


1.7 ExtremesandHeavyTailDistributions......................... 35


1.7.1 S&PDailyReturns,OnceMore........................ 35


1.7.2 TheExampleofthePCSIndex......................... 37


1.7.3 TheExampleoftheWeeklyS&PReturns................ 41
Problems ...................................................... 4
3
Notes&Complements........................................... 4
6


2 MULTIVARIATE DATA EXPLORATION ....................... 49


2.1 MultivariateDataandFirstMeasureofDependence ............. 49


2.1.1 DensityEstimation................................... 51


2.1.2 TheCorrelationCoefcient............................ 53


2.2 TheMultivariateNormalDistribution.......................... 56


2.2.1 SimulationofRandomSamples ........................ 57


2.2.2 TheBivariateCase................................... 58


2.2.3 ASimulationExample................................ 59


2.2.4 LetsHaveSomeCoffee .............................. 60


2.2.5 IstheJointDistributionNormal? ....................... 62


2.3 MarginalsandMoreMeasuresofDependence .................. 63


2.3.1 EstimationoftheCoffeeLog-ReturnDistributions ........ 64


2.3.2 MoreMeasuresofDependence......................... 68


2.4 CopulasandRandomSimulations............................. 70


2.4.1 Copulas ............................................ 71


2.4.2 FirstExamplesofCopulaFamilies...................... 72


2.4.3 CopulasandGeneralBivariateDistributions.............. 74


2.4.4 FittingCopulas...................................... 76


2.4.5 MonteCarloSimulationswithCopulas.................. 77


2.4.6 ARiskManagementExample ......................... 80


2.5 PrincipalComponentAnalysis ............................... 84


2.5.1 IdenticationofthePrincipalComponentsofaDataSet ... 84

2.5.2 PCAwithS-Plus .................................. 87


2.5.3 EffectiveDimensionoftheSpaceofYieldCurves......... 87


2.5.4 SwapRateCurves ................................... 90
Appendix1:CalculuswithRandomVectorsandMatrices ............. 9
2
Appendix2:FamiliesofCopulas .................................. 9
5
Problems ...................................................... 9
8
Notes&Complements........................................... 10
1


Part II REGRESSION

3 PARAMETRIC REGRESSION ................................105


3.1 SimpleLinearRegression.................................... 105


3.1.1 GettingtheData..................................... 106


3.1.2 FirstPlots .......................................... 107


3.1.3 RegressionSet-up.................................... 108


3.1.4 SimpleLinearRegression ............................. 111


3.1.5 CostMinimizations .................................. 114


3.1.6 RegressionasaMinimizationProblem .................. 114


3.2 RegressionforPrediction&Sensitivities....................... 116


3.2.1 Prediction .......................................... 116


3.2.2 IntroductoryDiscussionofSensitivityandRobustness ..... 118

3.2.3 ComparingL2andL1Regressions ..................... 119


3.2.4 TakingAnotherLookattheCoffeeData................. 121


3.3 SmoothingversusDistributionTheory......................... 123


3.3.1 RegressionandConditionalExpectation................. 123


3.3.2 MaximumLikelihoodApproach........................ 124


3.4 MultipleRegression ........................................ 129


3.4.1 Notation............................................ 129


3.4.2 TheS-Plus Functionlm ............................ 130


3.4.3 R2 asaRegressionDiagnostic ......................... 131


3.5 MatrixFormulationandLinearModels ........................ 133


3.5.1 LinearModels....................................... 134


3.5.2 LeastSquares(Linear)RegressionRevisited ............. 134


3.5.3 FirstExtensions ..................................... 139


3.5.4 TestingtheCAPM ................................... 142


3.6 PolynomialRegression...................................... 145


3.6.1 PolynomialRegressionasaLinearModel ............... 146


3.6.2 ExampleofS-Plus Commands....................... 146


3.6.3 ImportantRemark ................................... 148


3.6.4 PredictionwithPolynomialRegression.................. 148


3.6.5 ChoiceoftheDegreep ............................... 150


3.7 NonlinearRegression ....................................... 150


3.8 TermStructureofInterestRates:ACrashCourse................ 154


3.9 ParametricYieldCurveEstimation............................ 160


3.9.1 EstimationProcedures................................ 160


3.9.2 PracticalImplementation.............................. 161


3.9.3 S-Plus Experiments ................................ 163


3.9.4 ConcludingRemarks ................................. 165
Appendix:CautionaryNotesonSomeS-Plus Idiosyncracies ......... 16
6
Problems ...................................................... 16
9
Notes&Complements........................................... 17
2


4 LOCAL & NONPARAMETRIC REGRESSION ..................175


4.1 ReviewoftheRegressionSetup .............................. 175


4.2 NaturalSplinesasLocalSmoothers ........................... 177


4.3 NonparametricScatterplotSmoothers.......................... 178


4.3.1 SmoothingSplines ................................... 179


4.3.2 LocallyWeightedRegression .......................... 181


4.3.3 ARobustSmoother .................................. 182


4.3.4 TheSuperSmoother.................................. 183


4.3.5 TheKernelSmoother................................. 183


4.4 MoreYieldCurveEstimation ................................ 186


4.4.1 AFirstEstimationMethod ............................ 186


4.4.2 ADirectApplicationofSmoothingSplines .............. 188


4.4.3 USandJapaneseInstantaneousForwardRates............ 188


4.5 MultivariateKernelRegression............................... 189


4.5.1 RunningtheKernelinS-Plus ........................ 192


4.5.2 AnExampleInvolvingtheJune1998S&PFuturesContract 193

4.6 ProjectionPursuitRegression ................................ 197


4.6.1 TheS-Plus Functionppreg ......................... 198


4.6.2 ppreg PredictionoftheS&PIndicators................. 200


4.7 NonparametricOptionPricing................................ 205


4.7.1 GeneralitiesonOptionPricing ......................... 205


4.7.2 NonparametricPricingAlternatives..................... 212


4.7.3 DescriptionoftheData ............................... 213


4.7.4 TheActualExperiment ............................... 214


4.7.5 NumericalResults ................................... 220
Appendix:KernelDensityEstimation&KernelRegression............ 22
2
Problems ...................................................... 22
5
Notes&Complements........................................... 23
3


Part III TIME SERIES & STATE SPACE MODELS

5 TIME SERIES MODELS: AR, MA, ARMA, & ALL THAT .........239


5.1 NotationandFirstDenitions ................................ 239


5.1.1 Notation............................................ 239


5.1.2 RegularTimeSeriesandSignals ....................... 240


5.1.3 CalendarandIrregularTimeSeries ..................... 241


5.1.4 ExampleofDailyS&P500FuturesContracts ............ 243


5.2 HighFrequencyData ....................................... 245


5.2.1 TimeDate Manipulations ............................ 248


5.3 TimeDependentStatisticsandStationarity ..................... 253


5.3.1 StatisticalMoments .................................. 253


5.3.2 TheNotionofStationarity............................. 254


5.3.3 TheSearchforStationarity............................ 258


5.3.4 TheExampleoftheCO2 Concentrations ................ 261


5.4 FirstExamplesofModels.................................... 263


5.4.1 WhiteNoise ........................................ 264


5.4.2 RandomWalk....................................... 267


5.4.3 AutoRegressiveTimeSeries .......................... 268


5.4.4 MovingAverageTimeSeries .......................... 272


5.4.5 UsingtheBackwardShiftOperatorB................... 275


5.4.6 LinearProcesses..................................... 276


5.4.7 Causality,StationarityandInvertibility .................. 277


5.4.8 ARMATimeSeries.................................. 281


5.4.9 ARIMAModels ..................................... 282


5.5 FittingModelstoData ...................................... 282


5.5.1 PracticalSteps....................................... 282


5.5.2 S-Plus Implementation ............................. 284


5.6 PuttingaPriceonTemperature ............................... 289


5.6.1 GeneralitiesonDegreeDays........................... 290


5.6.2 TemperatureOptions ................................. 291


5.6.3 StatisticalAnalysisofTemperatureHistoricalData........ 294
Appendix:MoreS-Plus Idiosyncracies ........................... 30
1
Problems ...................................................... 30
4
Notes&Complements........................................... 30
8


6 MULTIVARIATE TIME SERIES, LINEAR SYSTEMS & KALMAN FILTERING .......................................311

6.1 MultivariateTimeSeries..................................... 311


6.1.1 StationarityandAuto-CovarianceFunctions.............. 312


6.1.2 MultivariateWhiteNoise.............................. 312


6.1.3 MultivariateARModels .............................. 313


6.1.4 BacktoTemperatureOptions .......................... 316


6.1.5 MultivariateMA&ARIMAModels .................... 318


6.1.6 Cointegration ....................................... 319


6.2 StateSpaceModels......................................... 321


6.3 FactorModelsasHiddenMarkovProcesses .................... 323


6.4 KalmanFilteringofLinearSystems........................... 326


6.4.1 One-Step-AheadPrediction............................ 326


6.4.2 DerivationoftheRecursiveFilteringEquations........... 327


6.4.3 WritinganS FunctionforKalmanPrediction............. 329


6.4.4 Filtering............................................ 331


6.4.5 MorePredictions .................................... 332


6.4.6 EstimationoftheParameters........................... 333


6.5 ApplicationstoLinearModels................................ 335


6.5.1 StateSpaceRepresentationofLinearModels............. 335


6.5.2 LinearModelswithTimeVaryingCoefcients ........... 336


6.5.3 CAPMwithTimeVaryingβs ......................... 337


6.6 StateSpaceRepresentationofTimeSeries...................... 338


6.6.1 TheCaseofARSeries................................ 339


6.6.2 TheGeneralCaseofARMASeries..................... 341


6.6.3 FittingARMAModelsbyMaximumLikelihood.......... 342


6.7 Example:PredictionofQuarterlyEarnings ..................... 343
Problems ...................................................... 34
6
Notes&Complements........................................... 35
1


NONLINEAR TIME SERIES: MODELS AND SIMULATION ......353

7.1 FirstNonlinearTimeSeriesModels ........................... 353


7.1.1 FractionalTimeSeries................................ 354


7.1.2 NonlinearAuto-RegressiveSeries ...................... 355


7.1.3 StatisticalEstimation ................................. 356


7.2 MoreNonlinearModels:ARCH,GARCH&AllThat............ 358


7.2.1 Motivation.......................................... 358


7.2.2 ARCHModels ...................................... 359


7.2.3 GARCHModels..................................... 361


7.2.4 S-Plus Commands ................................. 362


7.2.5 FittingaGARCHModeltoRealData................... 363


7.2.6 Generalizations...................................... 371


7.3 StochasticVolatilityModels.................................. 373


7.4 DiscretizationofStochasticDifferentialEquations............... 378


7.4.1 DiscretizationSchemes ............................... 379


7.4.2 MonteCarloSimulations:AFirstExample............... 381


7.5 RandomSimulationandScenarioGeneration................... 383


7.5.1 ASimpleModelfortheS&P500Index ................. 383


7.5.2 ModelingtheShortInterestRate ....................... 386


7.5.3 ModelingtheSpread ................................. 388


7.5.4 PuttingEverythingTogether........................... 389


7.6 FilteringofNonlinearSystems ............................... 391


7.6.1 HiddenMarkovModels............................... 391


7.6.2 GeneralFilteringApproach............................ 392


7.6.3 ParticleFilterApproximations ......................... 393


7.6.4 FilteringinFinance?StatisticalIssues................... 396


7.6.5 Application:TrackingVolatility........................ 397
Appendix:PreparingIndexData................................... 40
3
Problems ...................................................... 40
4
Notes&Complements........................................... 40
8


APPENDIX: AN INTRODUCTION TO S AND S-Plus ...............411


References ......................................................429

[此贴子已经被作者于2006-2-24 8:46:00编辑过]

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2005-10-23 02:46:00

已上传到论坛,可直接下载

40673.rar
大小:(3.62 MB)

只需: 20 个论坛币  马上下载

本附件包括:

  • Carmona - Statistical Analysis of Financial Data in S-PLUS 2004.pdf


[此贴子已经被作者于2006-2-24 8:49:00编辑过]

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2005-10-23 15:23:00
花钱买了,怎么无法显示那个网页啊楼主,千万不要骗人啊,小心被版主扣钱啊
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2005-10-23 15:24:00
传上来吧,老大,我花钱了,缺无法下载,能否发给我啊,liuqiangalong@163.com
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2005-10-23 15:35:00
提示: 作者被禁止或删除 内容自动屏蔽
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2005-10-23 17:12:00

下载速度很快,谢谢。

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群