全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 SAS专版
8908 59
2017-02-18
SAS过程步的一般形式为:
PROC 过程名DATA=输入数据集选项:
过程语句/选项;
过程语句/选项;
RUN;

     其中PROC 语句的选项是可选的,用来规定过程运行的一些设置,如果有多个选项用空格分开。DATA=输入数据集也是可选的,如果缺省的话使用最近生成的数据集。过程 步一般以RUN语句结束,也可以省略RUN语句而在下一个过程步或数据步的开始处结束,另外还有一种所谓"交互式过程"可以在遇到RUN语句时不结束过程 运行,只有遇到QUIT语句或者下一个过程步、数据步时才结束。过程步在PROC语句之后、结束之前可以有若干个过程语句。通常情况下,过程语句与数据步 中的语句不同,数据步中的语句不能用在过程步中。过程步语句一般以某一个关键字开头,比如VAR、BY、TABLES、WEIGHT等,语句中有一些有关 说明,如果有选择项的话要写在斜杠后。
    SAS过程步有些是对数据集作某种变换(比如SORT过程对数据集排序),不生成显示结果;多数过程步是对数据集作某些分析、报表,这时结果出现在 OUTPUT窗口(高精度绘图过程的输出在GRAPHICS窗口)。对OUTPUT窗口的结果,我们可以用"File - Save As"菜单把它保存到一个文本文件进行进一步的修饰,插入到其它报告中,也可以用"File - Print"菜单直接打印。

SAS过程步常用语句

一、VAR语句
VAR语句在很多过程中用来指定分析变量。在VAR后面给出变量列表:
VAR 变量1 变量名2……变量名n;
变量名列表可以使用省略的形式,如X1-X3,

二、MODEL语句
MODEL语句在一些统计建模过程中用来指定模型的形式。其一般形式为
MODEL因变量=自变量表/选项;

三、BY语句和CLASS语句
BY语句在过程中一般用来指定一个或几个分组变量,根据这些分组变量值把观测分组,然后对每一组观测分别进行本过程指定的分析。在使用带有BY语句的过程步之前一般先用SORT过程对数据集排序。
在一些过程(如方差分析)中,使用CLASS语句指定一个或几个分类变量。而在另一些过程(如MEANS)中,CLASS语句作用与BY语句类似,可以指定分类变量,把观测按分类变量分类后分别进行分析。使用CLASS时不需要先按分类变量排序。

四、OUTPUT语句
在过程步中经常用OUTPUT语句指定输出结果存放的数据集。不同过程中把输出结果存入数据集的方法各有不同,OUTPUT语句是用得最多的一种,其一般格式为:
OUTPUT OUT=输出数据集名 关键字=变量名 关键字=变量名…;
其中用OUT=给出了要生成的结果数据集的名字,用"关键字=变量名"的方式指定了输出哪些结果(关键字的例子比如MEANS过程中的MEAN,VAR,STD等等),等号后面的变量名指定了这些结果在输出数据集中叫什么名字。例如
proc means data=sasuser.aa;
var math;
output out=result n=n mean=meanmath
var=varmath;
run;
proc print data=result;
run;

五、FREQ语句和WEIGHT语句
FREQ语句指定一个重复数变量,每个观测中此变量的值说明这个观测实际代表多少个完全相同的重复观测。FREQ变量只取整数值。如
WEIGHT语句指定一个权重变量,在某些允许加权的过程中代表权重,其值与观测对应的方差的倒数成比例。

六、ID语句
有些过程(如PRINT、UNIVARIATE)需要输出观测的代号,这一般使用观测的序号。但是,如果数据集中有一个变量可以用来区分观测(如人名、省市名),就可以用ID语句指定这个变量作为观测标识。比如:
id name;

七、LABEL语句
过程步中的LABEL语句为变量指定一个临时标签,很多过程可以使用这样的标签。LABEL语句的格式为
LABEL 变量名='标签'变量名='标签'…;

经管之家SAS统计数据分析师培训,零基础学习,快速入门SAS数据分析!
培训时间:北京:2017年3月4-5日,11-12【四天周末班】
                           2017年3月9-12日【四天连续班】
培训费用:3600元;全日制学生2800元(凭学生证报名,仅限本科和硕士);差旅及食宿费用自理



报名流程:
1:点击“我要报名”,网上填写信息提交
2:给予反馈,确认报名信息
3:网上缴费
4:开课前一周发送课程电子版讲义,软件准备及交通住宿指南


联系方式:

曹老师

QQ:28819897062881989706

电话:010-53605625

邮箱:caolibo@pinggu.org


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2017-2-18 13:59:46
课程大纲

1 SAS总体概览
1.1 课程介绍
1.2 SAS系统介绍
1.3 SAS 模块介绍
1.4 SAS界面讲解

2  SAS 数据集
2.1 SAS数据集与逻辑库
2.2 直接创建数据:手动创建
2.3 间接获取数据:访问本地文件与数据库

3 SAS 语法
3.1 基本概念
3.2 语法规则
3.3 语法错误诊断与修正

4 SAS编程之data步——数据预分析
案例1:如何管理数据集
案例2:数据格式的排列组合
案例3:数据的纵向汇总
案例4:条件语句的设置

5 SAS编程之proc步——统计描述
5.1 平均数和标准差的意义
5.2 正态分布有多重要
5.3 数据标准化变换
5.4 缺失值填补

6 编程之proc步——统计推断
6.1 差异性分析
——假设检验原理
——t检验:判断组间差异
——方差分析:判断多组间差异
——协方差分析:存在协变量的群组差异

6.2 相关性分析
——散点图提供了变量间的关系模式
——变量关系的基础:pearson、spearman相关系数
——偏相关分析
——多变量相关性:典型相关

6.3 线性回归分析
——简单回归分析
截距意义何在:数据平移
斜率反应预测关系的大小
——多元回归分析
多元回归分析:回归概览性描述
处理异常值:残差分析
常用的对数变换
模型的可接受误差评析
哑变量变换

6.4 稳健的logistics回归
预分析:卡方独立性检验
构建模型与模型诊断、修正
自变量筛选与多模型评估:roc曲线
自变量的筛选:逐步回归
何谓稳健?

6.5 poisson 回归
poisson回归的诊断
贝叶斯poisson回归

6.6 稳健回归
稳健性之模型诊断
稳健性估计方法
稳健回归分析比较

6.7 主成分分析
多维偏好分析
探索性因子分析
问卷的结构效度指标
因子得分的应用:潜变量

6.8 对应分析
预分析:频数、交叉表与卡方
一元对应分析:行为与选择的对应特征
多元对应分析:维度的意义

6.9 联合分析
联合分析流程
析因设计与效应值计算
联合分析过程

7 数据挖掘(SAS/EM)
统计模型与数据挖掘的区别:数据量、数据精确度、时间、关注点
构建预测模型:购买倾向分析:基于回归、决策树、神经网络模型的预测
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-2-18 16:36:47
学习学习
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-2-18 16:48:17
谢谢,学习了
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-2-18 16:48:56
总结的很详细,楼主辛苦了
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-2-18 16:49:40
不错,支持
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群