全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 LATEX论坛
1577 6
2017-02-22

本帖隐藏的内容

Thousands of articles and tutorials have been written about data science and machine learning. Hundreds of books, courses and conferences are available. You could spend months just figuring out what to do to get started, even to understand what data science is about.

In this short contribution, I share what I believe to be the most valuable resources - a small list of top resources and starting points. This will be most valuable to any data practitioner who has very little free time.


Map-Reduce Explained

These resources cover data sets, algorithms, case studies, tutorials, cheat sheets, and material to learn the most popular data science languages: R and Python. Some non-standard techniques used in machine-to-machine communications and automated data science, even though technically simpler and more robust, are not included here as their use is not widespread, with one exception: turning unstructured into structured data. We will include them, as well as Hadoop-based techniques (distributed algorithms, or Map-Reduce) in a future article.

1. Technical Material

2. General Content

3. Additional Reading

Enjoy the reading!



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2017-2-22 21:33:08
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-2-22 22:43:50
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-2-23 09:29:46
学习了,谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-2-23 09:29:47
学习了,谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2025-2-28 11:21:15
学习了,谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群