全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 IRT理论相关软件
1724 3
2017-03-10
Rasch Model Parameter Estimation in the Presence of a Nonnormal Latent Trait Using a Nonparametric Bayesian Approach

Holmes Finch and Julianne M. Edwards   

Abstract

Standard approaches for estimating itemresponse theory (IRT) model parameters generally work under the assumption thatthe latent trait being measured by a set of items follows the normaldistribution. Estimation of IRT parameters in the presence of nonnormal latenttraits has been shown to generate biased person and item parameter estimates. Anumber of methods, including Ramsay curve item response theory, have beendeveloped to reduce such bias, and have been shown to work well for relativelylarge samples and long assessments. An alternative approach to the nonnormal latenttrait and IRT parameter estimation problem, nonparametric Bayesian estimation approach,has recently been introduced into the literature. Very early work with thismethod has shown that it could be an excellent option for use when fitting theRasch model when assumptions cannot be made about the distribution of the modelparameters. The current simulation study was designed to extend research in thisarea by expanding the simulation conditions under which it is examined and to comparethe nonparametric Bayesian estimation approach to the Ramsay curve item responsetheory, marginal maximum likelihood, maximum a posteriori, and the BayesianMarkov chain Monte Carlo estimation method. Results of the current study supportthat the nonparametric Bayesian estimation approach may be a preferred optionwhen fitting a Rasch model in the presence of nonnormal latent traits and itemdifficulties, as it proved to be most accurate in virtually all scenarios thatwere simulated in this study.


Keywords
item response theory, Rasch model, nonnormal latent trait, nonparametric Bayes, parameter estimation


附件列表
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2017-3-11 10:48:34
非参数贝叶斯方法。不错学习。但是似乎贝叶斯原理一直不是很火,用的人也不多。因为相对较难。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-3-11 20:13:01
jiandong4388 发表于 2017-3-11 10:48
非参数贝叶斯方法。不错学习。但是似乎贝叶斯原理一直不是很火,用的人也不多。因为相对较难。
相对较为简单,只是计算量比较大,不适合大样本量的数据。更不适用于大数据。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-9-4 23:51:27
thanks for your sharing, xie xie
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群