全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 python论坛
19263 24
2017-03-16
  • Title: Hands-On Machine Learning with Scikit-Learn and TensorFlow
  • Author: Aurélien Géron
  • Length: 581 pages
  • Edition: 1
  • Language: English
  • Publisher: O'Reilly Media
  • Publication Date: 2017-04-07
  • ISBN-10: 1491962291
  • ISBN-13: 9781491962299



【压缩包中只有AZW3格式,PDF格式是我用工具转换的,待true PDF等格式出来后再补充,谨慎下载!!!】



OReilly.Hands-On.Machine.Learning.with.Scikit-Learn.and.TensorFlow.1491962291.zip
大小:(17.25 MB)

只需: 5 个论坛币  马上下载

本附件包括:

  • OReilly.Hands-On.Machine.Learning.with.Scikit-Learn.and.TensorFlow.1491962291.azw3



Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques for Building Intelligent Systems

Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.
By using concrete examples, minimal theory, and two production-ready Python frameworks—scikit-learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started.
  • Explore the machine learning landscape, particularly neural nets
  • Use scikit-learn to track an example machine-learning project end-to-end
  • Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods
  • Use the TensorFlow library to build and train neural nets
  • Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning
  • Learn techniques for training and scaling deep neural nets
  • Apply practical code examples without acquiring excessive machine learning theory or algorithm details
Table of Contents
Chapter 1: The Machine Learning Landscape
Chapter 2: End-to-End Machine Learning Project
Chapter 3: Classification
Chapter 4: Training Linear Models
Chapter 5: Support Vector Machines
Chapter 6: Decision Trees
Chapter 7: Ensemble Learning and Random Forests
Chapter 8: Dimensionality Reduction
Chapter 9: Up and Running with TensorFlow
Chapter 10: Introduction to Artificial Neural Networks
Chapter 11: Training Deep Neural Nets
Chapter 12: Distributing TensorFlow Across Devices and Servers
Chapter 13: Convolutional Neural Networks
Chapter 14: Recurrent Neural Networks
Chapter 15: Autoencoders
Chapter 16: Reinforcement Learning

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2017-3-17 10:35:57
厉害了 我一直看的网页版
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-3-17 18:55:41
谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-4-2 11:49:49
感谢分享~~
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-5-2 17:17:04
找了很久了,多谢!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-5-8 07:05:35
Interesting book, thanks
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群