全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件
9774 42
2009-09-08
经典无需多言,并且全部是电子版(非扫描版)。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2009-9-8 20:57:16
SUMS    Metric Spaces    Searcoid
There is no philosophy which is not founded upon knowledge of
the phenomena, but to get any profit from this knowledge
it is absolutely necessary
to be a mathematician. Daniel Bernoulli, 1700–1782
To the Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
Cumulative Reference Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
1. Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Point Functions and Pointlike Functions . . . . . . . . . . . . . . . . . . . . 8
1.3 Metric Subspaces and Metric Superspaces . . . . . . . . . . . . . . . . . . 10
1.4 Isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Extending a Metric Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Metrics on Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.7 Metrics and Norms on Linear Spaces . . . . . . . . . . . . . . . . . . . . . . . 16
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2. Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1 Diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Distances from Points to Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Inequalities for Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Distances to Unions and Intersections . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Isolated Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Accumulation Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7 Distances from Sets to Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.8 Nearest Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4. Open, Closed and Dense Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1 Open and Closed Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Dense Subsets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Topologies on Subspaces and Superspaces . . . . . . . . . . . . . . . . . . 61
4.5 Topologies on Product Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6 Universal Openness and Universal Closure . . . . . . . . . . . . . . . . . . 64
4.7 Nests of Closed Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5. Balls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1 Open and Closed Balls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Using Balls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3 Balls in Subspaces and in Products . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4 Balls in Normed Linear Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6. Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.1 Definition of Convergence for Sequences . . . . . . . . . . . . . . . . . . . . 83
6.2 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3 Superior and Inferior Limits of Real Sequences . . . . . . . . . . . . . . 86
6.4 Convergence in Subspaces and Superspaces . . . . . . . . . . . . . . . . . 88
6.5 Convergence in Product Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.6 Convergence Criteria for Interior and Closure . . . . . . . . . . . . . . . 90
6.7 Convergence of Subsequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.8 Cauchy Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.9 Cauchy Sequences in Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
13. Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
13.1 Topological Equivalence of Metrics. . . . . . . . . . . . . . . . . . . . . . . . . 227
13.2 Uniform Equivalence of Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
13.3 Lipschitz Equivalence of Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
13.4 The Truth about Conserving Metrics. . . . . . . . . . . . . . . . . . . . . . . 238
13.5 Equivalence of Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
13.6 Equivalent Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Appendix A. Language and Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
A.1 Theorems and Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
A.2 Truth of Compound Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
A.3 If, and Only If . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
A.4 Transitivity of Implication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
A.5 Proof by Counterexample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
A.6 Vacuous Truth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
A.7 Proof by Contradiction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
A.8 Proof by Contraposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
A.9 Proof by Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
A.10 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
A.11 Let and Suppose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Appendix B. Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
B.1 Notation for Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
B.2 Subsets and Supersets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
B.3 Universal Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
B.4
附件列表

SUMS Metric Spaces Searcoid.pdf

大小:1.85 MB

只需: 10 个论坛币  马上下载

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-9-8 21:04:36
SUMS Linear Functional Analysis 2ed Bryan P. Rynne (2008 )
This book provides an introduction to the ideas and methods of linear functional
analysis at a level appropriate to the final year of an undergraduate
course at a British university. The prerequisites for reading it are a standard
undergraduate knowledge of linear algebra and real analysis (including the theory
of metric spaces).
Part of the development of functional analysis can be traced to attempts
to find a suitable framework in which to discuss differential and integral
equations. Often, the appropriate setting turned out to be a vector space of
real or complex-valued functions defined on some set. In general, such a vector
space is infinite-dimensional. This leads to difficulties in that, although
many of the elementary properties of finite-dimensional vector spaces hold in
infinite-dimensional vector spaces, many others do not. For example, in general
infinite-dimensional vector spaces there is no framework in which to make sense
of analytic concepts such as convergence and continuity. Nevertheless, on the
spaces of most interest to us there is often a norm (which extends the idea of
the length of a vector to a somewhat more abstract setting). Since a norm on a
vector space gives rise to a metric on the space, it is now possible to do analysis
in the space. As real or complex-valued functions are often called functionals,
the term functional analysis came to be used for this topic.
We now briefly outline the contents of the book. In Chapter 1 we present
(for reference and to establish our notation) various basic ideas that will be required
throughout the book. Specifically, we discuss the results from elementary
linear algebra and the basic theory of metric spaces which will be required in
later chapters. We also give a brief summary of the elements of the theory of
Lebesgue measure and integration. Of the three topics discussed in this introductory
chapter, Lebesgue integration is undoubtedly the most technically difficult
and the one which the prospective reader is least likely to have encountered

1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Lebesgue Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2. Normed Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1 Examples of Normed Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Finite-dimensional Normed Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3 Banach Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3. Inner Product Spaces, Hilbert Spaces. . . . . . . . . . . . . . . . . . . . . . . 51
3.1 Inner Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3 Orthogonal Complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4 Orthonormal Bases in Infinite Dimensions . . . . . . . . . . . . . . . . . . . 72
3.5 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4. Linear Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.1 Continuous Linear Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2 The Norm of a Bounded Linear Operator . . . . . . . . . . . . . . . . . . . . 96
4.3 The Space B(X, Y ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.4 Inverses of Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5. Duality and the Hahn–Banach Theorem . . . . . . . . . . . . . . . . . . . . 121
5.1 Dual Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.2 Sublinear Functionals, Seminorms and the Hahn–Banach
Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Contents
5.3 The Hahn–Banach Theorem in Normed Spaces . . . . . . . . . . . . . . . 132
5.4 The General Hahn–Banach theorem . . . . . . . . . . . . . . . . . . . . . . . . 137
5.5 The Second Dual, Reflexive Spaces
and Dual Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.6 Projections and Complementary Subspaces . . . . . . . . . . . . . . . . . . 155
5.7 Weak and Weak-∗ Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6. Linear Operators on Hilbert Spaces. . . . . . . . . . . . . . . . . . . . . . . . . 167
6.1 The Adjoint of an Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.2 Normal, Self-adjoint and Unitary Operators . . . . . . . . . . . . . . . . . . 176
6.3 The Spectrum of an Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.4 Positive Operators and Projections . . . . . . . . . . . . . . . . . . . . . . . . . 192
7. Compact Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
7.1 Compact Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
7.2 Spectral Theory of Compact Operators . . . . . . . . . . . . . . . . . . . . . . 216
7.3 Self-adjoint Compact Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
8. Integral and Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . 235
8.1 Fredholm Integral Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
8.2 Volterra Integral Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
8.3 Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
8.4 Eigenvalue Problems and Green’s Functions. . . . . . . . . . . . . . . . . . 253
9. Solutions to Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Notation Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
附件列表
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-9-8 21:12:36
SUMS General Relativity (N.M.J. Woodhouse)
It is a challenging but rewarding task to teach general relativity to undergraduates.
Time and experience are in short supply. One can rely neither on the
undivided attention of students who are studying many other exciting topics
in the final years of their course, nor on easy familiarity with the classical
tools of applied mathematics and geometry. Not only are the ideas themselves
difficult, but the calculations needed to solve even quite simple problems are
themselves technically challenging for students who have only recently learned
about multivariable calculus and partial differential equations.
For those with a strong background in pure mathematics, there is the temptation
to present the theory as an application of differential geometry without
conveying a clear understanding of its detailed connection with physical observation.
At the other extreme, one can focus too exclusively on physical prediction,
and ask the audience to take too much of the mathematical argument on
trust.
This book is based on a course given at the Mathematical Institute in Oxford
over many years to final-year mathematics students. It is in the tradition
of physical applied mathematics as it is taught in this country, and may, I hope,
be of use elsewhere. It is coloured by the mathematical leaning of our students,
but does not present general relativity as a branch of differential geometry. The
geometric ideas, which are of course central to the understanding of the nature
of gravity, are introduced in parallel with the development of the theory—the
emphasis being on laying bare how one is led to pseudo-Riemannian geometry
through a natural process of reconciliation of special relativity with the equivalence
principle. At centre stage are the ‘local inertial coordinates’ set up by
an observer in free-fall, in which special relativity is valid over short times and
distances.
In more practical terms, the book is a sequel, with some overlap in


Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
1. Newtonian Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 ‘Special’ and ‘General’ Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Newton’s Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Gravity and Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 The Equivalence Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Linearity and Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 The Starting Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2. Inertial Coordinates and Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 Lorentz Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Inertial Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Four-Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Tensors in Minkowski Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Operations on Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3. Energy-Momentum Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1 Dust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Fluids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Electromagnetic Energy-Momentum Tensor . . . . . . . . . . . . . . . . . . 37
4. Curved Space–Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1 Local Inertial Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Existence of Local Inertial Coordinates . . . . . . . . . . . . . . . . . . . . . 46
4.3 Particle Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Null Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



4.5 Transformation of the Christoffel Symbols . . . . . . . . . . . . . . . . . . . 53
4.6 Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.7 Vectors and Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.8 The Geometry of Surfaces* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.9 Summary of the Mathematical Formulation . . . . . . . . . . . . . . . . . . 64
5. Tensor Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1 The Derivative of a Tensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Parallel Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 Covariant Derivatives of Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 The Wave Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.6 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.7 Symmetries of the Riemann Tensor . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.8 Geodesic Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.9 Geodesic Triangles*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6. Einstein’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1 Tidal Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 The Weak Field Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3 The Nonvacuum Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7. Spherical Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.1 The Field of a Static Spherical Body . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2 The Curvature Tensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.3 Stationary Observers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.4 Potential Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.5 Photons and Gravitational Redshift . . . . . . . . . . . . . . . . . . . . . . . . . 101


12.1 Retarded Time in Minkowski Space . . . . . . . . . . . . . . . . . . . . . . . . . 157
12.2 Horizons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
12.3 Homogeneous and Isotropic Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 163
12.4 Cosmological Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
12.5 Homogeneity in Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
12.6 Cosmological Redshift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
12.7 Cosmological Horizons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Appendix A: Notes on Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Appendix B: Further problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
附件列表

SUMS General Relativity (N.M.J. Woodhouse).pdf

大小:1.92 MB

只需: 10 个论坛币  马上下载

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-9-8 21:20:51
SUMS Hyperbolic geometry
Preamble to the Second Edition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Preamble to the First Edition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
1. The Basic Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 A Model for the Hyperbolic Plane . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Riemann Sphere C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 The Boundary at Infinity of H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2. The General M¨obius Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1 The Group of M¨obius Transformations . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Transitivity Properties of M¨ob+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3 The Cross Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4 Classification of M¨obius Transformations . . . . . . . . . . . . . . . . . . . . 39
2.5 A Matrix Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6 Reflections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.7 The Conformality of Elements of M¨ob. . . . . . . . . . . . . . . . . . . . . . . 53
2.8 Preserving H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.9 Transitivity Properties of M¨ob(H) . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.10 The Geometry of the Action of M¨ob(H) . . . . . . . . . . . . . . . . . . . . . 65

3. Length and Distance in H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.1 Paths and Elements of Arc-length . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2 The Element of Arc-length on H . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.3 Path Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.4 From Arc-length to Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.5 Formulae for Hyperbolic Distance in H . . . . . . . . . . . . . . . . . . . . . . 99
3.6 Isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.7 Metric Properties of (H, dH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4. Planar Models of the Hyperbolic Plane . . . . . . . . . . . . . . . . . . . . . 117
4.1 The Poincar´e Disc Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.2 A General Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5. Convexity, Area, and Trigonometry . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.1 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.2 Hyperbolic Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.3 The Definition of Hyperbolic Area . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.4 Area and the Gauss–Bonnet Formula . . . . . . . . . . . . . . . . . . . . . . . 169
5.5 Applications of the Gauss–Bonnet Formula . . . . . . . . . . . . . . . . . . 174
5.6 Trigonometry in the Hyperbolic Plane. . . . . . . . . . . . . . . . . . . . . . . 181
6. Nonplanar models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.1 The Hyperboloid Model of the Hyperbolic Plane . . . . . . . . . . . . . 189
6.2 Higher Dimensional Hyperbolic Spaces . . . . . . . . . . . . . . . . . . . . . . 209
Solutions to Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
List of Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
附件列表

SUMS Hyperbolic geometry.pdf

大小:2.36 MB

只需: 10 个论坛币  马上下载

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-9-8 21:27:50
SUMS Game Theory Decisions Interaction And Evolution (2007)
This book is an introduction to game theory from a mathematical perspective.
It is intended to be a first course for undergraduate students of mathematics,
but I also hope that it will contain something of interest to advanced students
or researchers in biology and economics who often encounter the basics of game
theory informally via relevant applications. In view of the intended audience,
the examples used in this book are generally abstract problems so that the
reader is not forced to learn a great deal of a subject – either biology or economics
– that may be unfamiliar. Where a context is given, these are usually
“classical” problems of the subject area and are, I hope, easy enough to follow.
The prerequisites are generally modest. Apart from a familiarity with (or
a willingness to learn) the concepts of a proof and some mathematical notation,
the main requirement is an elementary understanding of probability. A
familiarity with basic calculus would be useful for Chapter 6 and some parts of
Chapters 1 and 8. The basic ideas of simple ordinary differential equations are
required in Chapter 9 and, towards the end of that chapter, some familiarity
with matrices would be an advantage – although the relevant ideas are briefly
described in an appendix.
I have tried to provide a unified account of single-person decision problems
(“games against nature”) as well as both classical and evolutionary game theory,
whereas most textbooks cover only one of these. There are two immediate
consequences of this broad approach. First, many interesting topics are left out.
However, I hope that this book will provide a good foundation for further study
and that the books suggested for further reading at the end of this volume will
go some way to filling the gaps. Second, the notation and terminology used
may be different in places from that which is commonly used in each of the
three separate areas. In this book, I have tried to use similar (combinations of)


Part I. Decisions
1. Simple Decision Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Optimisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Making Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Modelling Rational Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Modelling Natural Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5 Optimal Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2. Simple Decision Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Strategic Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Randomising Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Optimal Strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3. Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1 State-dependent Decision Processes . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Stochastic Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Optimal Strategies for Finite Processes . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Infinite-horizon Markov Decision Processes . . . . . . . . . . . . . . . . . . 48
3.6 Optimal Strategies for Infinite Processes . . . . . . . . . . . . . . . . . . . . . 50
3.7 Policy Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Part II. Interaction
4. Static Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.1 Interactive Decision Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Describing Static Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Solving Games Using Dominance . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Nash Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5 Existence of Nash Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.6 The Problem of Multiple Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.7 Classification of Games. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.8 Games with n-players . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5. Finite Dynamic Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.1 Game Trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Nash Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3 Information Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4 Behavioural Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.5 Subgame Perfection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.6 Nash Equilibrium Refinements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6. Games with Continuous Strategy Sets . . . . . . . . . . . . . . . . . . . . . . 107
6.1 Infinite Strategy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2 The Cournot Duopoly Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3 The Stackelberg Duopoly Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.4 War of Attrition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7. Infinite Dynamic Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.1 Repeated Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.2 The Iterated Prisoners’ Dilemma . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.3 Subgame Perfection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.4 Folk Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.5 Stochastic Games. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Part III. Evolution
8. Population Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.1 Evolutionary

9. Replicator Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
9.1 Evolutionary Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
9.2 Two-strategy Pairwise Contests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
9.3 Linearisation and Asymptotic Stability . . . . . . . . . . . . . . . . . . . . . . 171
9.4 Games with More Than Two Strategies . . . . . . . . . . . . . . . . . . . . . 174
9.5 Equilibria and Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Part IV. Appendixes
A. Constrained Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
B. Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
附件列表
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群