SMM Methods in Nonlinear Analysis(Kung-Ching Chang)
Preface
Nonlinear analysis is a new area that was born and has matured from abundant
research developed in studying nonlinear problems. In the past thirty
years, nonlinear analysis has undergone rapid growth; it has become part of
the mainstream research fields in contemporary mathematical analysis.
Many nonlinear analysis problems have their roots in geometry, astronomy,
fluid and elastic mechanics, physics, chemistry, biology, control theory, image
processing and economics. The theories and methods in nonlinear analysis
stem from many areas of mathematics: Ordinary differential equations, partial
differential equations, the calculus of variations, dynamical systems, differential
geometry, Lie groups, algebraic topology, linear and nonlinear functional
analysis, measure theory, harmonic analysis, convex analysis, game theory,
optimization theory, etc. Amidst solving these problems, many branches are
intertwined, thereby advancing each other.
The author has been offering a course on nonlinear analysis to graduate
students at Peking University and other universities every two or three
years over the past two decades. Facing an enormous amount of material,
vast numbers of references, diversities of disciplines, and tremendously different
backgrounds of students in the audience, the author is always concerned
with how much an individual can truly learn, internalize and benefit from a
mere semester course in this subject.
The author’s approach is to emphasize and to demonstrate the most fundamental
principles and methods through important and interesting examples
from various problems in different branches of mathematics. However, there
are technical difficulties: Not only do most interesting problems require background
knowledge in other branches of mathematics, but also, in order to solve
these problems, many details in argument and in computation should be included.
In this case, we have to get around the real problem, and deal with a
simpler one, such that the application of the method is understandable. The
author does not always pursue each theory in its broadest generality; instead,
he stresses the motivation, the success in applications and its limitations.
Contents
1 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Differential Calculus in Banach Spaces . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Frechet Derivatives and Gateaux Derivatives . . . . . . . . . . 2
1.1.2 Nemytscki Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.3 High-Order Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Implicit Function Theorem and Continuity Method . . . . . . . . . . 12
1.2.1 Inverse Function Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.3 Continuity Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3 Lyapunov–Schmidt Reduction and Bifurcation . . . . . . . . . . . . . . 30
1.3.1 Bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.3.2 Lyapunov–Schmidt Reduction . . . . . . . . . . . . . . . . . . . . . . . 33
1.3.3 A Perturbation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.3.4 Gluing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.3.5 Transversality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
1.4 Hard Implicit Function Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 54
1.4.1 The Small Divisor Problem . . . . . . . . . . . . . . . . . . . . . . . . . 55
1.4.2 Nash–Moser Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2 Fixed-Point Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.1 Order Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.2 Convex Function and Its Subdifferentials . . . . . . . . . . . . . . . . . . . 80
2.2.1 Convex Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.2.2 Subdifferentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.3 Convexity and Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.4 Nonexpansive Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
2.5 Monotone Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
2.6 Maximal Monotone Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.6 Free Discontinuous Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
4.6.1 Γ-convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
4.6.2 A Phase Transition Problem . . . . . . . . . . . . . . . . . . . . . . . . 280
4.6.3 Segmentation and Mumford–Shah Problem . . . . . . . . . . . 284
4.7 Concentration Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
4.7.1 Concentration Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
4.7.2 The Critical Sobolev Exponent and the Best Constants 295
4.8 Minimax Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
4.8.1 Ekeland Variational Principle . . . . . . . . . . . . . . . . . . . . . . . 301
4.8.2 Minimax Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
4.8.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
5 Topological and Variational Methods . . . . . . . . . . . . . . . . . . . . . . 315
5.1 Morse Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
5.1.2 Deformation Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
5.1.3 Critical Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
5.1.4 Global Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
5.1.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
5.2 Minimax Principles (Revisited) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
5.2.1 A Minimax Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
5.2.2 Category and Ljusternik–Schnirelmann
Multiplicity Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
5.2.3 Cap Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
5.2.4 Index Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
5.2.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
5.3 Periodic Orbits for Hamiltonian System
and Weinstein Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
5.3.1 Hamiltonian Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
5.3.2 Periodic Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
5.3.3 Weinstein Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
5.4 Prescribing Gaussian Curvature Problem on S2 . . . . . . . . . . . . . 380
5.4.1 The Conformal Group and the Best Constant . . . . . . . . . 380
5.4.2 The Palais–Smale Sequence . . . . . . . . . . . . . . . . . . . . . . . . . 387
5.4.3 Morse Theory for the Prescribing Gaussian Curvature
Equation on S2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
5.5 Conley Index Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
5.5.1 Isolated Invariant Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
5.5.2 Index Pair and Conley Index. . . . . . . . . . . . . . . . . . . . . . . . 397
5.5.3 Morse Decomposition on Compact Invariant Sets
and Its Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
附件列表