全部版块 我的主页
论坛 金融投资论坛 六区 金融学(理论版) 金融工程(数量金融)与金融衍生品
2995 2
2009-09-22
教程+答案+数据+软件

Table of contents
Preface     
  1    INTRODUCTION     
    1.1    Examples of Time Series     
    1.2    Objectives of Time Series Analysis     
    1.3    Some Simple Time Series Models     
    1.3.3 A General Approach to Time Series Modelling     
    1.4 Stationary Models and the Autocorrelation Function     
    1.4.1 The Sample Autocorrelation Function     
    1.4.2 A Model for the Lake Huron Data     
    1.5 Estimation and Elimination of Trend and Seasonal Components     
    1.5.1 Estimation and Elimination of Trend in the Absence of Seasonality     
    1.5.2 Estimation and Elimination of Both Trend and Seasonality     
    1.6 Testing the Estimated Noise Sequence     
1.7 Problems   
  2    STATIONARY PROCESSES     
    2.1    Basic Properties     
    2.2    Linear Processes     
    2.3    Introduction to ARMA Processes     
    2.4 Properties of the Sample Mean and Autocorrelation Function     
    2.4.2 Estimation of $\gamma(\cdot)$ and $\rho(\cdot)$     
    2.5    Forecasting Stationary Time Series     
    2.5.3 Prediction of a Stationary Process in Terms of Infinitely Many Past Values     
    2.6    The Wold Decomposition     
1.7 Problems   
  3    ARMA MODELS     
    3.1    ARMA($p,q$) Processes     
    3.2 The ACF and PACF of an ARMA$(p,q)$ Process     
    3.2.1 Calculation of the ACVF     
    3.2.2 The Autocorrelation Function     
    3.2.3 The Partial Autocorrelation Function     
    3.3    Forecasting ARMA Processes     
1.7 Problems   
  4    SPECTRAL ANALYSIS     
    4.1    Spectral Densities     
    4.2    The Periodogram     
    4.3 Time-Invariant Linear Filters     
    4.4 The Spectral Density of an ARMA Process     
1.7 Problems   
    5 MODELLING AND PREDICTION WITH ARMA PROCESSES     
    5.1    Preliminary Estimation     
    5.1.1 Yule-Walker Estimation     
    5.1.3 The Innovations Algorithm     
    5.1.4 The Hannan-Rissanen Algorithm     
    5.2 Maximum Likelihood Estimation     
    5.3    Diagnostic Checking     
    5.3.1 The Graph of $\t=1,\ldots,n\     
    5.3.2 The Sample ACF of the Residuals     
    5.3.3 Tests for Randomness of the Residuals     
    5.4    Forecasting     
    5.5    Order Selection     
1.7 Problems   
    6 NONSTATIONARY AND SEASONAL TIME SERIES     
    6.1 ARIMA Models for Nonstationary Time Series     
    6.2    Identification Techniques     
    6.3 Unit Roots in Time Series Models     
    6.3.1 Unit Roots in Autoregressions     
    6.3.2 Unit Roots in Moving Averages     
    6.4    Forecasting ARIMA Models     
    6.5    Seasonal ARIMA Models     
    6.5.1 Forecasting SARIMA Processes     
    6.6 Regression with ARMA Errors     
1.7 Problems   
  7    MULTIVARIATE TIME SERIES     
    7.1    Examples     
    7.2 Second-Order Properties of Multivariate Time Series     
    7.3 Estimation of the Mean and Covariance Function     
    7.3.2 Estimation of $\Gamma(h)$     
    7.3.3 Testing for Independence of Two Stationary Time Series     
    7.4 Multivariate ARMA Processes     
    7.4.1 The Covariance Matrix Function of a Causal ARMA Process     
    7.5 Best Linear Predictors of Second-Order Random Vectors     
    7.6 Modelling and Forecasting with Multivariate AR Processes     
    7.6.1 Estimation for Autoregressive Processes Using Whittle's Algorithm     
    7.6.2 Forecasting Multivariate Autoregressive Processes     
    7.7    Cointegration     
1.7 Problems   
  8    STATE-SPACE MODELS     
    8.1 State-Space Representations     
    8.2    The Basic Structural Model     
    8.3 State-Space Representation of ARIMA Models     
    8.4    The Kalman Recursions     
    8.5 Estimation for State-Space Models     
    8.6 State-Space Models with Missing Observations     
    8.7    The EM Algorithm     
    8.8 Generalized State-Space Models     
1.7 Problems   
  9    FORECASTING TECHNIQUES     
    9.1    The ARAR Algorithm     
    9.1.1  Memory Shortening
    9.1.2  Fitting a Subset Autoregression     
    9.1.3  Forecasting
    9.1.4  Running the Program ARAR     
    9.2    The Holt-Winters Algorithm     
    9.3 The Holt-Winters Seasonal Algorithm
    9.4 Choosing a Forecasting Algorithm
1.7 Problems   
  10    FURTHER TOPICS     
    10.1    Transfer Function Models     
    10.1.1 Prediction Based on a Transfer-Function Model     
    10.2    Intervention Analysis     
    10.3    Nonlinear Models     
    10.3.1 Deviations From Linearity     
    10.3.2 Chaotic Deterministic Sequences     
    10.3.3 Distinguishing Between White Noise and IID Sequences     
    10.3.4 Three Useful Classes of Nonlinear Models     
    10.4    Continuous-Time Models     
    10.5    Long-Memory Models     
10.4 Problems   
APPENDIX     
  Appendix A    Random Variables     
    A.1 Distribution Functions and Expectation     
    A.2    Random Vectors     
    A.3 The Multivariate Normal Distribution     
A.3     Problems   
  Appendix B    Statistical Complements     
    B.1 Least Squares Estimation     
    B.1.1 The Gauss-Markov Theorem     
    B.1.2 Generalized Least Squares     
    B.2 Maximum Likelihood Estimation   
    B.2.1 Properties of Maximum Likelihood Estimators     
    B.3    Confidence Intervals     
    B.3.1 Large-Sample Confidence Regions     
    B.4    Hypothesis Testing     
    B.4.2 Large-Sample Tests Based on Confidence Regions     
  Appendix C    Mean Square Convergence     
    C.1    The Cauchy Criterion     
  Appendix D    An ITSM Tutorial     
    D.1    Getting Started     
    D.2 Preparing Your Data for Modelling
    D.3    Finding a Model for Your Data     
    D.4    Testing Your Model     
    D.4.3 Testing for Randomness of the Residuals     
    D.5    Prediction     
    D.6    Model Properties     
    D.6.4 Generating Realizations of a Random Series     
  Bibliography     
  Index     



附件列表
cda_displayimage.jpg

原图尺寸 22.38 KB

cda_displayimage.jpg

Brockwell-Intro to Time Series and Forcasting.pdf

大小:2.35 MB

只需: 2 个论坛币  马上下载

solutions.PDF

大小:264.44 KB

只需: 2 个论坛币  马上下载

itsm.rar

大小:2.14 MB

只需: 2 个论坛币  马上下载

本附件包括:

  • itsm.hlp
  • Index of.doc
  • itsm.exe
  • ITSM.GID
  • Genvej til itsm.lnk
  • itsm2000.zip

数据.rar

大小:80.46 KB

只需: 2 个论坛币  马上下载

本附件包括:

  • wine.tsm
  • appa.tsm
  • appb.tsm
  • appc.tsm
  • appd.tsm
  • appe.tsm
  • appf.tsm
  • appg.tsm
  • apph.tsm
  • appi.tsm
  • appj.tsm
  • appjk2.tsm
  • appk.tsm
  • ARCH.TSM
  • austres.tsm
  • beer.tsm
  • cdid.tsm
  • cdin.tsm
  • chaos.tsm
  • chocs.tsm
  • deaths.tsm
  • djao2.tsm
  • djaopc2.tsm
  • djaopcf2.tsm
  • dowj.tsm
  • e1021.tsm
  • E1032.TSM
  • e1042.tsm
  • e1062.tsm
  • e1321.tsm
  • e1331.tsm
  • e1332.tsm
  • E334.TSM
  • E611.TSM
  • E731A.TSM
  • E731B.TSM
  • E732.TSM
  • e911.tsm
  • e921.tsm
  • e923.tsm
  • e951.tsm
  • elec.tsm
  • finserv.tsm
  • gnfp.tsm
  • goals.tsm
  • imports.tsm
  • lake.tsm
  • lead.tsm
  • lres.tsm
  • ls2.tsm
  • lynx.tsm
  • NILE.TSM
  • oshorts.tsm
  • polio.tsm
  • respc.tsm
  • sales.tsm
  • SBL.TSM
  • SBL2.TSM
  • SBLD.TSM
  • SBLDIN.TSM
  • SBLIN.TSM
  • signal.tsm
  • sres.tsm
  • stock7.tsm
  • stocklg7.tsm
  • strikes.tsm
  • sunspots.tsm
  • trings.tsm
  • tundra.tsm
  • uspop.tsm
  • airpass.tsm

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2009-10-7 23:52:30
nice!!!! Thanks!!!!!!!!!!!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-10-12 07:41:27
1# icapm

帅哥楼主降价
一块钱一个,你会赚的更多...
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群