全部版块 我的主页
论坛 金融投资论坛 六区 金融学(理论版)
3688 11
2005-11-27

Contents


List of Figures xiii

List of Tables xvii

Preface xix

1. Quantitative Measures of the Stock Market 1

1.1. Pricing Future Cash Flows, 1

1.2. The Expected Return, 6

1.3. Volatility, 9

1.4. Modeling of Stock Price Diffusion, 14

1.4.1. Continuous Time, 16

1.4.2. Jump Diffusion, 17

1.4.3. Mean Reversion in the Diffusion Context, 18

1.4.4. Higher Order Lag Correlations, 19

1.4.5. Time-Varying Variance, 20

1.5. Efficient Market Hypothesis, 22

1.5.1. Weak Form Efficiency, 23

1.5.2. Semi-strong Form Efficiency, 24

1.5.3. Strong Form Efficiency, 25

Appendix: Simple Regression Analysis, 26

2. A Short Review of the Theory of Risk Measurement 29

2.1. Quantiles and Value at Risk, 29

2.1.1. Pearson Family as a Generalization of the Normal Distribution, 32

2.1.2. Pearson Type IV Distribution for Our Mutual Fund Data, 36

2.1.3. Nonparametric Value at Risk (VaR) Calculation from Low Percentiles, 37

2.1.4. Value at Risk for Portfolios with Several Assets, 37

2.2. CAPM Beta, Sharpe, and Treynor Performance Measures, 39

2.2.1. Using CAPM for Pricing of Securities, 43

2.2.2. Using CAPM for Capital Investment Decisions, 43

2.2.3. Assumptions of CAPM, 44

2.3. When You Assume . . . , 44

2.3.1. CAPM Testing Issues, 44

2.4. Extensions of the CAPM, 46

2.4.1. Observable Factors Model, 47

2.4.2. Arbitrage Pricing Theory (APT) and Construction of Factors, 48

2.4.3. Jensen, Sharpe, and Treynor Performance Measures, 50

Appendix: Estimating the Distribution from the Pearson Family of

Distributions, 52

3. Hedging to Avoid Market Risk 55

3.1. Derivative Securities: Futures, Options, 55

3.1.1. A Market for Trading in Futures, 57

3.1.2. How Smart Money Can Lose Big, 60

3.1.3. Options Contracts, 61

3.2. Valuing Derivative Securities, 63

3.2.1. Binomial Option Pricing Model, 65

3.2.2. Option Pricing from Diffusion Equations, 66

3.3. Option Pricing Under Jump Diffusion, 68

3.4. Implied Volatility and the Greeks, 70

3.4.1. The Role of D of an Option for Downside Risk, 71

3.4.2. The Gamma (G) of an Option, 71

3.4.3. The Omega, Theta,Vega, and Rho of an Option, 71

Appendix: Drift and Diffusion, 73

4. Monkey Wrench in the Works: When the Theory Fails 75

4.1. Bubbles, Reversion, and Patterns, 75

4.1.1. Calendar Effects, 76

4.1.2. Mean Reversion, 77

4.1.3. Bubbles, 79

4.2. Modeling Volatility or Variance Explicitly, 80

4.3. Testing for Normality, 83

4.3.1. The Logistic Distribution Compared with the Normal, 83

4.3.2. Empirical cdf and Quantile–Quantile (Q–Q) Plots, 85

4.3.3. Kernel Density Estimation, 86

4.4. Alternative Distributions, 88

4.4.1. Pareto (Pareto-Levy, Stable Pareto) Distribution, 89

4.4.2. Inverse Gaussian, 90

4.4.3. Laplace (Double-Exponential) Distribution, 91

4.4.4. Azzalini’s Skew-Normal (SN) Distribution, 91

4.4.5. Lognormal Distribution, 95

4.4.6. Stable Pareto and Pareto-Levy Densities, 96

5. Downside Risk 101

5.1. VaR and Downside Risk, 101

5.1.1. VaR from General Parametric Densities, 103

5.1.2. VaR from Nonparametric Empirical Densities, 104

5.1.3. VaR for Longer Time Horizon (t > 1) and the IGARCH Assumption, 107

5.1.4. VaR in International Setting, 109

5.2. Lower Partial Moments (Standard Deviation, Beta, Sharpe, and Treynor), 110

5.2.1. Sharpe and Treynor Measures, 113

5.3. Implied Volatility and Other Measures of Downside Risk, 115

6. Portfolio Valuation and Utility Theory 119

6.1. Utility Theory, 119

6.1.1. Expected Utility Theory (EUT), 120

6.1.2. A Digression: Derivation of Arrrow-Pratt Coefficient of Absolute Risk Aversion (CARA), 125

6.1.3. Size of the Risk Premium Needed to Encourage Risky Equity Investments, 126

6.1.4. Taylor Series Links EUT, Moments of f(x), and Derivatives of U(x), 127

6.2. Nonexpected Utility Theory, 129

6.2.1. A Digression: Lorenz Curve Scaling over the Unit Square, 129

6.2.2. Mapping from EUT to Non-EUT within the Unit Square, 131

6.3. Incorporating Utility Theory into Risk Measurement and Stochastic Dominance, 135

6.3.1. Class D1 of Utility Functions and Investors, 135

6.3.2. Class D2 of Utility Functions and Investors, 135

6.3.3. Explicit Utility Functions and Arrow-Pratt Measures of Risk Aversion, 136

6.3.4. Class D3 of Utility Functions and Investors, 137

6.3.5. Class D4 of Utility Functions and Investors, 137

6.3.6. First-Order Stochastic Dominance (1SD), 139

6.3.7. Second-Order Stochastic Dominance (2SD), 140

6.3.8. Third-Order Stochastic Dominance (3SD), 141

6.3.9. Fourth-Order Stochastic Dominance (4SD), 142

6.3.10. Empirical Checking of Stochastic Dominance Using

Matrix Multiplications and Incorporation of 4DPs of Non-EUT, 142

6.4. Incorporating Utility Theory into Option Valuation, 147

6.5. Forecasting Returns Using Nonlinear Structures and Neural Networks, 148

6.5.1. Forecasting with Multiple Regression Models, 149

6.5.2. Qualitative Dependent Variable Forecasting Models, 150

6.5.3. Neural Network Models, 152

7. Incorporating Downside Risk 155

7.1. Investor Reactions 155

7.1.1. Irrational Investor Reactions, 156

7.1.2. Prospect Theory, 156

7.1.3. Investor Reaction to Shocks, 158

7.2. Patterns of Downside Risk, 160

7.3. Downside Risk in Stock Valuations and Worldwide Investing, 163

7.3.1. Detecting Potential Downturns from Growth Rates of Cash Flows, 163

7.3.2. Overoptimistic Consensus Forecasts by Analysts, 164

7.3.3. Further Evidence Regarding Overoptimism of Analysts, 166

7.3.4. Downside Risk in International Investing, 166

7.3.5. Legal Loophole in Russia, 167

7.3.6. Currency Devaluation Risk, 167

7.3.7. Forecast of Currency Devaluations, 168

7.3.8. Time Lags and Data Revisions, 169

7.3.9. Government Interventions Make Forecasting Currency Markets Difficult, 170

7.4. Downside Risk Arising from Fraud, Corruption, and

International Contagion, 171

7.4.1. Role of Periodic Portfolio Rebalancing, 172

7.4.2. Role of International Financial Institutions in Fighting Contagions, 172

7.4.3. Corruption and Slow Growth of Derivative Markets, 173

7.4.4. Corruption and Private Credit Rating Agencies, 174

7.4.5. Corruption and the Home Bias, 175

7.4.6. Value at Risk (VaR) Calculations Worsen Effect of Corruption, 178

8. Mathematical Techniques 181

8.1. Matrix Algebra, 181

8.1.1. Sum, Product, and Transpose of Matrices, 181

8.1.2. Determinant of a Square Matrix and Singularity, 183

8.1.3. The Rank and Trace of a Matrix, 185

8.1.4. Matrix Inverse, Partitioned Matrices, and

Their Inverse, 186

8.1.5. Characteristic Polynomial, Eigenvalues, and

Eigenvectors, 187

8.1.6. Orthogonal Vectors and Matrices, 189

8.1.7. Idempotent Matrices, 190

8.1.8. Quadratic and Bilinear Forms, 191

8.1.9. Further Study of Eigenvalues and Eigenvectors, 192

8.2. Matrix-Based Derivation of the Efficient Portfolio, 194

8.3. Principal Components Analysis, Factor Analysis, and Singular

Value Decomposition, 195

8.4. Ito’s Lemma, 199

8.5. Creation of Risk-Free Nonrandom g(S, t) as a

Hedge Portfolio, 201

8.6. Derivation of Black-Scholes Partial Differential Equation, 202

8.7. Risk-Neutral Case, 205

9. Computational Issues 207

9.1. Sampling, Compounding, and Other Data Issues in Finance, 207

9.1.1. Random Sampling Implicit in the Available Data, 209

9.1.2. Sampling Distribution of the Sample Mean, 209

9.1.3. Compounding of Returns and the Lognormal

Distribution, 209

9.1.4. Relevance of Geometric Mean of Returns in

Compounding, 211

9.1.5. Sampling Distribution of Average Compound Return, 212

9.2. Numerical Procedures, 213

9.2.1. Faulty Rounding Stony, 213

9.2.2. Numerical Errors in Excel Software, 214

9.2.3. Binary Arithmetic, 214

9.2.4. Round-off and Cancellation Errors in Floating Point Arithmetic, 215

9.2.5. Algorithms Matter, 215

9.2.6. Benchmarks and Self-testing of Software Accuracy, 216

9.2.7. Value at Risk Implications, 217

9.3. Simulations and Bootstrapping, 218

9.3.1. Random Number Generation, 218

9.3.2. An Elementary Description of Simulations, 220

9.3.3. Simple iid Bootstrap in Finance, 223

9.3.4. A Description of the iid Bootstrap for Regression, 223

Appendix A: Regression Specification, Estimation, and Software

Issues, 230

Appendix B: Maximum Likelihood Estimation Issues, 234

Appendix C: Maximum Entropy (ME) Bootstrap for State-Dependent

Time Series of Returns, 240

10. What Does It All Mean? 247

Glossary of Greek Symbols 253

Glossary of Notations 257

Glossary of Abbreviations 261

References 265

Name Index 277

Index 281

40670.rar
大小:(1.02 MB)

只需: 10 个论坛币  马上下载

本附件包括:

  • Vinod and Reagle - Preparing for the Worst -Incorporating Downside Risk in Stock Market Investment.pdf


[此贴子已经被作者于2006-2-24 8:13:56编辑过]

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2005-11-28 10:14:00

非常不错,多谢

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2005-11-28 11:12:00

路过,看过

[此贴子已经被作者于2005-11-28 11:14:52编辑过]

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2005-11-29 22:24:00

按密码解压不开,怎么回事

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2005-11-29 22:46:00

请用键盘输入密码

假如仍有问题,请再下载一遍

[此贴子已经被作者于2005-11-29 22:51:28编辑过]

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2005-11-29 23:23:00
投资最优组合EXCEL软件
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群