全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件
12607 66
2017-09-12

Python在量化领域的现状

       就跟JavaScript在web领域无可撼动的地位一样,Python也已经在金融量化投资领域占据了重要位置,从各个业务链条都能找到相应的框架实现。

       在量化投资(证券和比特币)开源项目里,全球star数排名前10位里面,有7个是Python实现的。从数据获取到策略回测再到交易,覆盖了整个业务链。

       商业量化平台Uqer优矿,也同样是基于Python实现和提供服务的。国内后来的其他量化平台,例如RiceQuant和JoinQuant,也主推Python环境。可见Python在量化平台应用的占有程度。


为什么是Python

       Python是一门比较全面与平衡的语言,既能满足包括web在内的系统应用的开发,又能满足数据统计分析等数学领域的计算需求,同时也能作为胶水语言跟其它开发语言互通融合。

      在数据分析方面,没有其他语言能像Python这样既能精于计算又能保持性能,对于时间序列数据的处理展现了简单便捷的优势。而如此适用的特点,主要得益于有如下框架和工具的支持:


Numpy底层基于C实现的科学计算包

具有强大的N维数组对象;Array具有数据广播功能的函数库;具有完整的线性代数和随机数生成函数。


SciPy开源算法和数学工具包

最优化线性代数、积分、插值、特殊函数;快速傅里叶变换;信号处理和图像处理常微分方程求解;其他科学与工程中常用的计算,其功能与Matlab和Scilab等类似。


Pandas起源于AQR的数据处理包,具有金融数据分析基因

基于Series、DataFrame和Pannel多维表结构数据;数据自动对齐功能;数据清洗和计算功能;时间序列数据快速处理功能。


Matplotlib基于Python的数据绘图包,能够绘制出各类丰富的图形和报表

另外,Python在机器学习领域的应用也越来越多,其中的开源项目包括了scikit-learn、Theano、Orange等。


Python的特点

1、简单易学Python是一门简单而又简约的语言。阅读好的Python程序感觉就像阅读英语。Python非常容易上手,学习曲线比较平缓。

2、高级语言垃圾自动处理且面向对象的高级语言。Python 具备所有脚本语言的简单和易用性,并且具有在编译语言中才能找到的高级软件工程工具。

3、扩展移植可与其他语言无缝对接并能实现跨平台。

4、开源项目只要能想到的,几乎都有现成的包能找到。


Python金融书籍

       目前市面上已经出现了不少针对金融领域数据分析和量化的书籍,有了这些书籍,实现金融数据处理完成量化投资分析便容易多了。

       金融领域主要的Python书籍:《Python for Data Analysis》

《Python for Finance》《Mastering Python for Finance》《Machine Learning in Action》

                       (本文来源自天善社区挖地兔的博客。原文链接:https://ask.hellobi.com/blog/waditu/6433


Python量化课程

_现场学习Python量化投资思想,策略与实战

Python机器学习与量化投资
时间:2019年5月24-27日 (四天) 北京, 6月6-9日 (四天) 上海   
安排:上午9:00-12:00;下午1:30-4:30;答疑4:30-5:00
地点:
北京市海淀区厂洼街3号丹龙大厦/上海市培训教室

学费:5000元 / 4200元 (仅限全日制在读本科生及硕士生优惠价);食宿自理

我要报名

讲师介绍:

蔡立耑(Terry Tsai),美国伊利诺伊大学金融硕士,华盛顿大学经济学硕士、博士,在国内外如美国、韩国有丰富的授课经验。带领博、硕士生从事投资决策、金融衍生品、风险分析、交易策略等领域的研究。

生长于台湾,求学于美国,在台湾的信息与金融业担任高级顾问,不仅拥有扎实的金融理论基础,而且具备广阔的国际视野与前沿的研究理念!经管之家资深量化投资讲师。

主持多项金融大数据研究项目,涉及SAS、R、Matlab、Mathematica、Java 与C#、F# 等多种统计分析工具与编程语言。在数据处理、数据分析以及数据可视化等数据科学领域有丰富的经验和独到的见解。

亲身实践各种金融应用,主持研究团队与台湾知名大学与企业合作开展各种金融研究,例如量化投资、风险分析等。在统计套利、金融大数据等领域有丰富的操作经验与授课经验。带领的量化投资研究团队用多种编程语言实现了统计套利以及风险管理自动化程序。


课程介绍
人工智能与机器学习对交易与投资产生巨大影响。交易领域的人工智能应用,大多藉由机器学习来鍳别,分析资产价格变化的特征或因子,以利于构建盈利的交易策略。本课程将系统性介绍常用机器学习方法在股市的应用。

课程大纲:

Python 基本介绍(一天)

1. Python对象类型

2. Python 常用语句和语法

3. Python函數


Python数据分析(一天)

1. Numpy程序库与多维数组

2. Pandas与时间序列数据

3. Matplotlib数据可视化


机器学习与量化交易(两天)

机器学习是从看似无序的数据中分析规律,识别可能具代表性的模式,再藉以对未知数据进行预测。

而股市具有大数据特征,应用机器学习方法从海量的股市数据中发现潜在规律,预测未来发展趋势,对于降低投资风险与增进决策效率显然有重要的意义。

本课程拟介绍如何应用下列的机器学习方法来预测股市,并分析不同方法的效能。

1. 逻辑回归

1.1 逻辑回归基本概念

1.2 二元分类与逻辑回归模型

1.3 多类别逻辑回归

1.4 逻辑回归的案例分析


2. 机器学习算法:线性判别分析(LDA)和 二次判别分析(QDA)

2.1 判别分析的基本定义

2.2 线性判别分类器与二次判别分类器的理论模型

2.3 构造判别分析分类器的具体操作步骤

2.4 LDA与QDA 金融案例分析


3. 支持向量机

3.1  支持向量机基本概念

3.2  支持向量机的原理

3.3  线性可分与非线性可分支持向量机

3.4  核函数

3.5  支持向量机与金融数据分类


4. 聚类与统计套利

4.1 时间序列的基本概念

4.2 配对交易的思想与实现

4.3 聚类演算法的介绍与应用


5. 随机森林

5.1 决策树

5.2 随机森林的基本概念与演算法

5.3 随机森类算法的独特优势

5.4 随机森林的应用:股票市场


6. 人工神经网路(ANN)与深度神经网络(DNN)

6.1 人工神经网络的缘起

6.2 神经元与激活函数

6.3 人工神经网络

6.4 反向传播算法

6.5 深度神经网络

6.6 人工神经网络与深度神经网络的金融市场应用分析


7. 卷积神经网络(CNN)

7.1 卷积神经网络的基本想法

7.2 卷积层

7.3 池化层

7.4 全连接层

7.5 卷积神经网络的整体架构及其变形架构

7.6 CNN与股票预测

     

8. 递归神经网络(RNN)

8.1 递归神经网络的基本框架

8.2 Backpropagation Through Time(BPTT) 算法            

8.3 RNN与CNN对股票预测的对比分析

8.4 長短期記憶模型LSTM和GRU 网络

8.5 RNN, LSTM和GRU模型对股票预测的对比分析


报名流程:

1:点击“我要报名”,网上填写信息提交;
2:给予反馈,确认报名信息;
3:网上订单缴费;
4:开课前一周发送课程电子版讲义,软件准备及交通住宿指南。


优惠:

现场班老学员9折优惠;
同一单位三人以上同时报名9折优惠;

以上优惠不叠加。


联系方式:

魏老师

QQ:1143703950 点击这里给我发消息

Tel:010-68478566

Mail:vip@pinggu.org

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2017-9-12 09:03:30
欢迎大家报名咨询Python课程
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-9-12 09:05:14
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-9-12 09:06:23
从最早的R量化投资到Python量化投资,蔡老师主讲的量化课程始终会为大家分享前沿的实用的量化实战技能!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-9-12 09:09:34
谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-9-12 09:58:18
好好好好好好好好好好好好
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群