全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
787 0
2017-09-15
摘要:快速、准确和全面地从大量互联网文本信息中定位情感倾向是当前大数据技术领域面临的一大挑战。文本情感分类方法大致分为基于语义理解和基于有监督的机器学习两类。语义理解处理情感分类的优势在于其对不同领域的文本都可以进行情感分类,但容易受到中文存在的不同句式及搭配的影响,分类精度不高。有监督的机器学习虽然能够达到比较高的情感分类精度,但在一个领域方面得到较高分类能力的分类器不适应新领域的情感分类。在使用信息增益对高维文本做特征降维的基础上,将优化的语义理解和机器学习相结合,设计了一种新的混合语义理解的机器学习中文情感分类算法框架。基于该框架的多组对比实验验证了文本信息在不同领域中高且稳定的分类精度。

原文链接:http://www.cqvip.com/QK/92817X/201506/665348056.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群