摘要:以稀疏学习为主线,从多阶段、多步骤优化思想的角度出发,对当前流行的L1正则化求解算法进行分类,比较基于次梯度的多步骤方法、基于坐标优化的多阶段方法,以及软L1正则化方法的收敛性能、时空复杂度和解的稀疏程度。分析表明,基于
机器学习问题特殊结构的学习算法可以获得较好的稀疏性和较快的收敛速度。
原文链接:http://www.cqvip.com/QK/95200X/201117/39348652.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)