摘要:针对Windows环境下恶意程序数量众多且难以判别的情况,为了改善和提高对恶意程序的识别能力和效果,结合程序行为分析和机器学习技术,设计了一个恶意程序的检测系统。通过对所采集的程序样本集进行动态分析,提取出其两类系统调用序列作为样本特征,以此作为输入数据,对机器学习分类器进行监督式学习训练,使其能够对恶意行为和正常行为进行区分,并可以对于未知程序的性质做出判定,可以高效地识别出恶意程序。结果表明,可以通过较短时间的训练即可到达较为满意的判定能力,也表明了
机器学习对于程序行为性质判定方面具有广泛的应用前景。
原文链接:http://www.cqvip.com/QK/96514A/201406/663757162.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)