摘要:提出了基于高光谱信息的大白菜种子品种分类识别方法。利用近红外高光谱图像采集系统采集了八种共239个大白菜种子样本;提取15pixel×15pixel感兴趣区域平均光谱反射率信息作为样本信息;采用多元散射校正预处理方法对光谱进行消噪;验证了Ada-Boost算法、极限学习机(extreme learning machine,ELM)、随机森林(random forest,RF)和支持向量机(support vector machine,SVM)四种分类算法的分类判别效果。为了简化输入变量,通过载荷系数分析选取了10个大白菜种子品种分类判别的特征波长。实验结果表明,四种分类算法基于全波段的分类识别对81个预测样本的正确区分率均超过90%,最优的分类判别模型为ELM和RF,识别正确率达到了100%;以10个特征波长的分类判别精度略有下降,但输入变量大幅减少,提高了信息处理效率,其中最优分类判别模型为EW-ELM模型,判别正确率为100%,因此以载荷系数选取的特征波长是有效的。利用高光谱结合
机器学习对大白菜种子品种进行快速、无损分类识别是可行的,为大白菜种子批量化在线检测提供了一种新的方法。
原文链接:http://www.cqvip.com/QK/90993X/201409/71856578504849524857485255.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)