全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
1165 0
2017-09-16
摘要:为了对网络监视领域中样本进行预测和相关处理,大多数研究在计算基线时都忽略了样本的概率特征,未能结合样本的数据分布,对样本进行相关的处理,忽略了利用样本的周期特性和数据分布对样本进行相关处理的改进空间.因此,本文分析样本历史数据的噪音,通过引入高斯过程机器学习方法,提出基于周期样本的高斯过程机器学习方法,通过采用复合核函数,实现了网络主动监控中的基线计算.首先对”周期数据”进行聚类处理,同时将核函数拆分为全局核函数部分和局部核函数部分,使用聚类点训练全局核函数部分;使用局部点训练局部核函数.通过实验,与其它算法相比大大提高了效率,而且保证了近似的准确性.最终保障网络安全、提升网络性能和用户满意度.

原文链接:http://www.cqvip.com/QK/95659X/201309/46953748.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群