全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
534 0
2017-09-17
摘要:通过对道路交通流变化规律和影响因素的分析,提出了一种新的交通流预测模型.首先,鉴于模糊聚类方法易陷入局部最优解及运算速度慢的缺点,采用蚁群算法中Pij(t)改进模糊聚类分析;然后以最拥挤时间段的25个点交通流数据、天气数据以及天类别数据为指标,将历史数据聚分成若干簇团,并采用动量BP神经网络针对每一簇团建立相应的预测模型.对实际数据进行预测分析的结果表明:该模型不仅对普通工作日有较高的预测精度,对双休日、节假日和一些特殊情况(雨雪天气)也有较好的预测精度.

原文链接:http://www.cqvip.com/Main/Detail.aspx?id=34606622

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群