全部版块 我的主页
论坛 经济学论坛 三区 微观经济学
20940 9
2005-12-10
请问:何谓拟凹函数?经济学中最优化问题中的目标函数为何假设成为拟凹函数?如何理解斯拉特条件(SLATER CONDITION)?先谢过了!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2005-12-10 00:29:00

所谓拟凹函数,就是相对坐标横轴,图像里没有下凸现象的曲线。亦即对任意两点x、y属于定义域,f(ax+(1-a)y)>=min[f(x), f(y)]。容易证明,若函数是拟凹的,当且仅当其定义域的所有上轮廓集(upper contour set)都是凸的。对于效用函数来说,偏好是凸的,当且仅当效用函数是拟凹的。

至于他的意义,其实就是讨论为什么偏好一定要假定为凸的,偏好的凸性往往被解释为偏好是边际替代率是递减的(注意:是边际替代率递减,而非边际效用递减!)。从直觉上解释这种现象,就好比一个人,买苹果和桔子,他觉得1个苹果三个桔子比一个桔子三个苹果好,那么这两种消费结构直线上的点两个苹果两个桔子,也必定比一个桔子三个苹果好。这是一个二维的情况。一维则更清楚了,三个苹果如果比一个苹果好,那么两个苹果一定也比一个苹果好。随着维数增加,这个规律也是比较合理的。

另外,优化问题中把偏好假设为是凸的,再加上局部非饱和性质,使得对于任意的预算约束下,总有最大效用消费的解。否则,谈优化是没有任何意义的。

[此贴子已经被作者于2005-12-10 0:32:11编辑过]

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2005-12-10 00:34:00

补充:我上面所说的下凸现象,指的是斜率从负到零,又继续上升的现象。

奇怪,我想编辑上面的帖子,老是失败!

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2005-12-12 21:59:00
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-8-19 03:29:37
所谓拟凹函数,就是相对坐标横轴,图像里没有下凸现象的曲线
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-8-19 21:27:08
分析家 发表于 2009-8-19 03:29 所谓拟凹函数,就是相对坐标横轴,图像里没有下凸现象的曲线
错。

y=x^2,其中x>=0——即某条抛物线的右半部分,是拟凹的凸函数。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群