全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
527 0
2017-09-20
摘要:选取太阳辐照时间、辐照强度以及气温等影响光伏阵列输出功率的主要气象因素,根据相似日的输出功率具有较强的关联度,提出选择相似日的方法,设计基于相似日和径向基函数(RBF)神经网络的光伏阵列输出功率预测模型。选取最邻近的一个相似日与待预测日气象特征向量的差值作为RBF神经网络的输入变量,神经网络的输出值即为待预测日光伏阵列输出功率。以我国西北某地光伏阵列的实测功率数据对所提模型进行训练和验证,得到预测模型的平均绝对百分误差为13.82%,均方根误差为0.4054,验证了所提模型具有较好的精度。

原文链接:http://www.cqvip.com/QK/97650X/201301/44648400.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群