摘要:基于我国湖库富营养化评价标准和RBF、GRNN、BP、Elman神经网络算法原理,分别构建RBF等4种神经网络湖库富营养化等级评价模型,采用内插法构造网络训练样本,把我国湖库富营养化评价等级临界值作为评价样本进行"预测",将"预测"结果作为湖库富营养化程度评价等级的划分依据,对全国24个主要湖库富营养化程度进行评价。结果表明:RBF、GRNN、BP、Elman神经网络模型对全国24个主要湖库富营养化程度评价结果基本相同,表明研究建立的RBF等4种神经网络湖库富营养化程度评价模型和评价方法均是合理可行的,其评价精度高,可为湖库富营养化程度评价提供新的途径和方法。同BP和Elman网络算法相比,RBF与GRNN
神经网络模型不仅对湖库富营养化程度评价结果完全相同,且模型具有收敛速度快、预测精度高、调整参数少(只有SPREAD参数),不易陷入局部极小值等优点,可以更快地预测评价网络,具有较大的计算优势。
原文链接:http://www.cqvip.com/QK/98577X/201206/44201834.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)