全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
849 0
2017-09-21
摘要:渗透率是储层评价中的重要参数,与传统的经验模型或统计模型计算的结果相比,BP神经网络由于高强度非线性映射能力及较强的自适应和自学能力,可以更精确地预测储层渗透率。通过对常规BP网络模型的改进,即在模型中加入定量化的岩性评价参数作为一个学习样本,建立了储层参数与测井响应及岩性之间的非线性模型。应用该方法对北部湾盆地涠西南凹陷涠洲某油田流一段的渗透率进行预测,取得了较好的效果。该方法计算的渗透率与实测渗透率吻合度很好,而且比用常规的、没有岩性控制的BP网络模型计算的渗透率精度更高。除了在储层参数预测方面进行应用,该方法还在储层沉积微相和岩性预测方面有着广泛的应用前景。

原文链接:http://www.cqvip.com/QK/71135X/201107/36070530.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群