全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
490 0
2017-09-21
摘要:以马尾松为例,探索并验证BP神经网络模型在立木生物量估测上的适用性。通过12种算法的筛选、输入变量和输出变量的确定以及隐层节点数的选择,确定最优的模型拓扑结构,构建单隐层BP神经网络模型;对比单输入变量与多输入变量模型、单输出变量与多输出变量模型,并分析模型的输入变量数和输出变量数对模型估测精度的影响;将优选BP模型与传统相对生长模型进行对比以验证BP模型的可行性。结果表明:1)最优BP模型LM-DH-8-WtWaWr的训练算法为Levenberg-Marquardt算法,输入变量为D、H,输出变量为Wt、Wa、Wr,隐层节点数为8。2)输入变量和输出变量的增加不会降低BP神经网络模型的精度。3)模型LM-DH-8-WtWaWr能够精确地估测马尾松立木生物量,其精度高于传统的相对生长模型。该模型能够一次性地引入多个解释变量,并可以同时估测多个量,从而简化了生物量建模和估测工作,对实际生产具有一定的意义。

原文链接:http://www.cqvip.com/QK/95250X/201302/45153961.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群