全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
893 0
2017-09-21
摘要:根据2008年长沙市火车站监测点全年大气PM10及气象参数的小时平均数据,建立BP人工神经网络预测模型,预测PM10小时平均浓度。为证明人工神经网络模型用于预测PM10质量浓度的准确性,研究中考虑2种预测模型:多元线性回归模型与人工神经网络模型。研究结果表明:与传统的多元线性回归模型相比,人工神经网络模型能够捕捉污染物浓度与气象因素间的非线性影响规律,能更好地预测PM10质量浓度,拟合优度R2有较大提高;所选取气象参数及污染源强变量能较准确地描述大气PM10质量浓度的实时变化,用于PM10质量浓度的预测准确度较高,整体R2可达0.62;人工神经网络预测模型不仅适用于一般污染浓度情况,对于高污染时期PM10质量浓度的预测也较为准确。

原文链接:http://www.cqvip.com/QK/90745B/201205/41996487.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群