全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
721 0
2017-09-21
摘要:对声发射信号进行5层小波分解提取6个频段的能量值,把它与切削速度、切削深度、进给量和切削时间一起作为刀具状态的特征向量.通过主元分析进行降维、消除特征向量间的相关性后,把得到的主元作为BP(Back Propagation)神经网络的输入向量.BP神经网络应用改进的LM(Levenberg-Marquart)算法进行学习,利用输入向量对网络进行训练后,实现对刀具后刀面磨损量VB的预测.实验结果显示:基于主元分析和LM算法改进的BP神经网络建立的预测系统,网络输出与实测VB值的误差0.03以内;根据预测VB值的范围可判别出刀具的不同状态.

原文链接:http://www.cqvip.com/QK/71135X/201107/37438664.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群