摘要:隐式篇章关系识别的主要挑战是如何表示两个文本单元的语义信息.由于句子的语义信息往往由语法树中的信息焦点(谓词部分)所决定,所以关注信息焦点可以提升篇章关系识别的效果.为了增强信息焦点的作用,引入树状长短时记忆(tree-structured long short-term memory,Tree-LSTM)网络,使用其遗忘门的特性区别对待不同孩子节点的信息.最后利用神经张量网络(neural tensor network,NTN)来计算两个句子语义向量之间的关系.基于PDTB2.0(Penn Discourse Treebank)语料数据进行实验,实验结果表明混合树结构
神经网络比传统的RNN模型在大部分关系中的F-score上提高了3.0%左右.
原文链接:http://d.wanfangdata.com.cn/Periodical/xmdxxb201704021
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)