摘要:隐马尔可夫模型(HMM)是一种强大的统计学
机器学习技术,该模型已经成功地应用于连续语音识别、在线手写识别,在生物学信息中也得到了广泛的应用。由于该模型的强大的学习能力,在自然语言处理领域逐渐得到了应用。对隐马尔可夫模型在词性标注、命名实体识别、信息抽取应用中的关键问题进行了分析。着重分析了在信息抽取时使用隐马尔可夫模型的重点和难点问题,期望让更多的研究人员进一步认识和了解HMM。最后分析了隐马尔可夫模型在应用中的不足之处和改进研究。
原文链接:http://www.cqvip.com/Main/Detail.aspx?id=32963120
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)