摘要:词语语义相似度计算在自然语言处理如词义消歧、语义信息检索、文本自动分类中有着广泛的应用。不同于传统的方法,提出的是一种基于维基百科社区挖掘的词语语义相似度计算方法。本方法不考虑单词页面文本内容,而是利用维基百科庞大的带有类别标签的单词页面网信息,将基于主题的社区发现算法HITS应用到该页面网,获取单词页面的社区。在获取社区的基础上,从3个方面来考虑两个单词间的语义相似度:(1)单词页面语义关系;(2)单词页面社区语义关系;(3)单词页面社区所属类别的语义关系。最后,在标准数据集WordSimilarity-353上的实验结果显示,该算法具有可行性且略优于目前的一些经典算法;在最好的情况下,其Spearman相关系数达到0.58。
原文链接:http://www.cqvip.com/QK/92817X/201604/668952505.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)