全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
745 0
2017-09-24
摘要:SSH作为一种加密通讯协议,不仅为远程登录等服务提供了安全保障,其隧道应用还可以封装一些其他未知应用,对网络安全产生了一定的潜在影响,因此需要准确识别出这些应用,并及时采取相应措施,维护网络安全.由于SSH协议的加密特性,通常采用基于流量统计特征的方法对其进行识别,且多是采用有监督的机器学习方法.通过对无监督机器学习方法与有监督机器学习方法的对比,比较了C4.5,SVM,BayesNet,K-means,EM这5种机器学习方法对SSH应用的分类效果,证实了通过机器学习方法来识别SSH应用是可行的.实验结果显示无监督的K-means方法具有最好的分类效果,对SSH隧道中的HTTP应用的识别准确率最高,达到了99%以上.

原文链接:http://www.cqvip.com/QK/94913X/2012S2/1003429577.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群