全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
556 0
2017-09-26
摘要:为了准确地把握网络安全发展态势,提出了一种基于自适应聚类径向基函数(adaptive clustering radical basis function,AC-RBF)神经网络的网络安全态势预测(network security situation prediction,NSSP)方法。该方法对网络安全态势样本自适应聚类,获得了神经网络隐层节点数,采用梯度下降法训练神经网络,寻找网络安全态势样本之间的非线性映射关系,利用该关系对未来时刻网络安全态势进行了预测。仿真实验表明,相对于K-均值RBF神经网络及支持向量机(support vector machine,SVM)预测模型,该方法在神经网络规模较小的情况下,不仅能够反映网络安全态势的总体趋势,而且还提高了预测精度,能够提供给网络安全管理员一个直观的网络安全态势图。

原文链接:http://www.cqvip.com/QK/96514A/201405/662686691.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群