全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
1083 0
2017-09-26
摘要:本文提出了一种基于隐马尔可夫(HMM)和遗传算法优化的反向传播网络(GA-BP)的混合模型语音识别方法。该方法首先利用HMM对语音信号进行时序建模,并计算出语音对HMM的输出概率的评分,将得到的概率评分作为优化后反向传播网络的输入,得到分类识别信息,最后根据混合模型的识别算法作出识别决策。通过Matlab软件对已有的样本数据进行训练和测试。仿真结果表明,由于设计充分利用了HMM时间建模能力强和GA-BP神经网络分类能力强等特点,该混合模型比单纯的HMM具有更强的抗噪性,克服了神经网络的局部最优问题,大大提高了识别的速度,明显改善了语音识别系统的性能。

原文链接:http://www.cqvip.com/Main/Detail.aspx?id=37567056

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群