全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
669 0
2017-09-28
摘要:随机优化方法是求解大规模机器学习问题的主流方法,其研究的焦点问题是算法是否达到最优收敛速率与能否保证学习问题的结构。目前,正则化损失函数问题已得到了众多形式的随机优化算法,但绝大多数只是对迭代进行平均的输出方式讨论了收敛速率,甚至无法保证最为典型的稀疏结构。与之不同的是,个体解能很好保持稀疏性,其最优收敛速率已经作为open问题被广泛探索。另外,随机优化普遍采用的梯度无偏假设往往不成立,加速方法收敛界中的偏差在有偏情形下会随迭代累积,从而无法应用。本文对一阶随机梯度方法的研究现状及存在的问题进行综述,其中包括个体收敛速率、梯度有偏情形以及非凸优化问题,并在此基础上指出了一些值得研究的问题。

原文链接:http://www.cqvip.com/QK/96163X/201701/671479280.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群