全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
657 0
2017-09-28
摘要:机器学习常常面临数据稀疏和数据噪音问题.根据认知的相对性规律提出了相对变换方法,证明了相对变换是非线性的放大变换,可提高数据之间的可区分性.同时在一定条件下相对变换还能抑制噪音,并使稀疏的数据变得相对密集.通过相对变换将数据的原始空间变换到相对空间后,在相对空间中度量数据的相似性或距离更加符合人们的直觉,从而提高机器学习的性能.理论分析和实践验证了所提方法的普适性和有效性.

原文链接:http://d.wanfangdata.com.cn/Periodical/jsjyjyfz200804006

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群