全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
855 0
2017-09-29
摘要:由于网络流量特征随时间和网络环境的变化而发生改变,导致基于机器学习的流量分类方法精度明显降低.同时,根据经验定期更新分类器是耗时的,且难以保证新分类器泛化性能.因而,文中提出一种基于信息熵的自适应网络流概念漂移分类方法,首先根据特征属性的信息熵变化检测概念漂移,再采用增量集成学习策略在概念漂移点引入当前流量建立的分类器,并剔除性能下降的分类器,达到更新分类器的目的,最后加权集成分类结果.实验结果表明该方法可以有效地检测概念漂移并更新分类器,表现出较好的分类性能和泛化能力.

原文链接:http://d.wanfangdata.com.cn/Periodical/jsjxb201707005

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群