摘要:流量标准化是光谱数据挖掘中的一个基本环节,他对挖掘结果的精度和系统的效率均有重要影响,常用方法存在效率较低的问题,为此研究了光谱数据挖掘中流量标准化的算法设计和效率比较问题.首先,探讨了光谱流量标准化技术不同实现方案的渐进效率,给出了实现高效计算的算法,并分析了它们的时间复杂度和空间复杂度.然后,通过SDSS(sloan digital sky survey)的实测光谱数据,横向比较了不同流量标准化算法的效率差异.在光谱流量标准化算法的纵向理论研究中,主要考虑的是计算效率随数据规模增长的变化规律,是在极限意义下进行探讨.在横向实验比较中,考虑重点是不同算法中基本操作时间复杂度的差异及其对算法效率的影响.理论研究和实验结果表明,虽然四种标准化方法Smax,Smedian,Smean和Sunit的渐进效率的类型相同,但对常见的观测规模光谱数据来说,Smax和Smean的效率远远高于Sunit和Smedian,且常用的Sunit标准化方法效率最低.该研究对于在光谱
数据挖掘和开发中,如何根据数据的规模,具体需求,从整体上考虑精度和效率的折衷,以确定合适的流量标准化方法有重要的参考价值.
原文链接:http://d.wanfangdata.com.cn/Periodical/gpxygpfx201201041
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)