摘要:支持向量机(support vector machine,简称SVM)是近年来在国外发展起来的一种新型机器学习技术,由于其出色的学习性能,该技术已成为当前国际机器学习界的研究热点.与传统的人工
神经网络(artificialneural network,简称ANN)不同,SVM是基于结构风险最小化(structural risk minimization,简称SRM)原理,而ANN是基于经验风险最小化(empirical risk minimization,简称ERM)原理.理论和实验表明,SVM不但结构简单,而且具有较好的泛化能力,尤其是对于小样本问题,成功地克服了ANN学习过程中的'过学习'和可能会陷入局部极小问题.另外,SVM算法是一个凸二次优化问题,能够保证极值解是全局最优解.就SVM理论进行了详细综述,旨在引起广大研究者的重视.
原文链接:http://www.cqvip.com//QK/85444X/200402/10231453.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)