全部版块 我的主页
论坛 数据科学与人工智能 人工智能 机器学习
3344 9
2017-10-19

















Topics Covered
The topics covered in this book are

  • An overview of decision trees and random forests
  • A manual example of how a human would classify a dataset, compared to how a decision tree would work
  • How a decision tree works, and why it is prone to overfitting
  • How decision trees get combined to form a random forest
  • How to use that random forest to classify data and make predictions
  • How to determine how many trees to use in a random forest
  • Just where does the "randomness" come from
  • Out of Bag Errors & Cross Validation - how good of a fit did the machine learning algorithm make?
  • Gini Criteria & Entropy Criteria - how to tell which split on a decision tree is best among many possible choices
  • And More








附件列表
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2017-10-19 12:40:14
Thanks
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-10-19 13:27:19
谢谢楼主分享!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-10-19 21:34:03
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2019-4-19 11:31:25
不是PDF版本的。。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2019-4-21 23:18:32
谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群