全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
767 0
2017-10-26
摘要:为了对煤层含气量进行定量预测,采用BP神经网络预测方法,建立了煤层含气量预测的BP神经网络模型.以沁水盆地南部主采煤层为对象,分析得出了影响沁水盆地南部煤层含气量分布的主要控制因素有煤层有效埋藏深度、煤变质程度和煤岩、煤质特征等,选择了煤层有效埋藏深度、水分与灰分以及镜质组最大反射率3参数作为BP神经网络模型的基本特征量,建立了煤层含气量与这些因素之间的相关关系和BP神经网络预测模型,对煤层含气量进行预测分析.结果表明:BP神经网络模型具有极强的非线性逼近能力,能真实反映煤层含气量与主控因素之间的非线性关系,预测结果与实测值之间误差小,相对误差小于10%,预测效果明显地优于基于朗格缪尔方程的煤层含气量预测模型.

原文链接:http://www.cqvip.com//QK/93316X/200804/27633015.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群