全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
919 0
2017-10-26
摘要:词义消歧一直是自然语言处理领域的关键问题和难点之一。通常把词义消歧作为模式分类问题进行研究,其中特征选择是一个重要的环节。该文根据贝叶斯假设提出基于信息增益的特征选择方法,并以此改进贝叶斯模型。通过信息增益计算,挖掘上下文中词语的位置信息,提高贝叶斯模型知识获取的效率,从而改善词义分类效果。该文在8个歧义词上进行了实验,结果发现改进后的贝叶斯模型在消歧正确率上比改进前平均提高了3.5个百分点,改进幅度较大,效果突出,证明了该方法的有效性。

原文链接:http://www.cqvip.com//QK/91130A/200812/28986208.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群