全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
697 0
2017-10-27
摘要:支持向量机(SVM)是一种较新的机器学习方法,它利用靠近边界的少数向量构造一个最优分类超平面.在训练分类器时,SVM的着眼点在于两类的交界部分,那些混杂在另一类中的点往往无助于提高分类器的性能,反而会大大增加训练器的计算负担,同时它们的存在还可能造成过学习,使泛化能力减弱.为了改善支持向量机的泛化能力,该文在其基础上提出了一种改进的SVM--NN-SVM:它先对训练集进行修剪,根据每个样本与其最近邻类标的异同决定其取舍,然后再用SVM训练得到分类器.实验表明,NN-SVM相比SVM在分类正确率、分类速度以及适用的样本规模上都表现出了一定的优越性.

原文链接:http://www.cqvip.com//QK/90818X/200308/8229674.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群