全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
442 0
2017-10-27
摘要:针对常和BP算法预测速度慢、易陷入局部最优解的缺点,提出了基于RBF网络和BP网络的级联神经网络预测方法,把天气因素和历史负荷对负荷预测值的影响分开考虑,其中RBF子网络用于描述历史负荷的影响,BP子网络则对在RBF子网络中难以考虑的天气因素给出了较好的映射关系,最终将两个子网络组合为一个级联神经网络,一系列的研究算例证明该方法是快速,准确的。

原文链接:http://www.cqvip.com//QK/91996X/200203/6124651.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群